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Abstract

We consider the Frank-Wolfe (FW) method for constrained convex optimization,
and we show that this classical technique can be interpreted from a different
perspective: FW emerges as the computation of an equilibrium (saddle point) of
a special convex-concave zero sum game. This saddle-point trick relies on the
existence of no-regret online learning to both generate a sequence of iterates but
also to provide a proof of convergence through vanishing regret. We show that our
stated equivalence has several nice properties, as it exhibits a modularity that gives
rise to various old and new algorithms. We explore a few such resulting methods,
and provide experimental results to demonstrate correctness and efficiency.

1 Introduction

There has been a burst of interest in a technique known as the Frank-Wolfe method (FW) [10], also
known as conditional gradient, for solving constrained optimization problems. FW is entirely a
first-order method, does not require any projection operation, and instead relies on access to a linear
optimization oracle. Given a compact and convex constraint set X ⊂ Rd, we require the ability
to (quickly) answer queries of the form O(v) := arg minx∈X x

>v, for any vector v ∈ Rd. Other
techniques such as gradient descent methods require repeated projections into the constraint set which
can be prohibitively expensive. Interior point algorithms, such as Newton path following schemes
[1], require computing a hessian inverse at each iteration which generally does not scale well with the
dimension.

In the present paper we aim to give a new perspective on the Frank-Wolfe method by showing that,
in a broad sense, it can be viewed as a special case of equilibrium computation via online learning.
Indeed, when the optimization objective is cast as a particular convex-concave payoff function,
then we are able to extract the desired optimal point via the equilibrium of the associated zero-sum
game. Within Machine Learning there has been a lot of attention paid to the computation of optimal
strategies for zero-sum games using online learning techniques. An amazing result, attributed to [12]
yet now practically folklore in the literature, says that we can compute the optimal equilibrium in
a zero sum game by pitting two online learning strategies against each other and, as long as they
achieve the desired regret-minimization guarantee, the long-run empirical average of their actions
(strategy choices) must converge to the optimal equilibrium. This trick is both very beautiful but also
extremely useful: it was in some sense the core of early work in Boosting [11], has been shown to
generalize many linear programming techniques [3], it serves as the key tool for recent advances in
flow optimization problems [8], and has been instrumental in understanding differential privacy [9].

We begin in Section 2 by reviewing the method of proving a generalized minimax theorem using
regret minimization, and we show how this proof is actually constructive and gives rise to a generic
meta-algorithm. This meta-algorithm is especially modular, and allows for the substitution of various
algorithmic tools that achieve, up to convergence rates, essentially the same core result. We then show
that the original Frank-Wolfe algorithm is simply one instantiation of this meta-algorithm, yet where
the convergence rate follows as a trivial consequence of main theorem, albeit with an additional
O(log T ) factor.
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We build upon this by showing that a number of variants of Frank-Wolfe are also simple instantiations
of our meta-algorithm, with a convergence rate that follows easily. For example, we propose the
cumulative gradient variant of Frank-Wolfe and prove that the same guarantee holds, yet relies on
a potentially more stable optimization oracle. We show that techniques of [31] using stochastic
smoothing corresponding to implement a Follow-the-perturbed-leader variant of our meta-algorithm.
And finally, we use our framework to prove an entirely new result, showing that one obtains an
O(log T/T ) convergence rate even when the objective f(·) is not smooth, but instead the constraint
set satisfies strong convexity.

The results laid out in this paper provide value not only in proving rates and establishing new and
existing algorithms but also in setting forth a perspective on Frank-Wolfe-style methods that can
leverage the wealth of results we have available from online learning and online convex optimization.
At present, the possibilities and limits of various online learning problems has been thoroughly
worked out [20, 7] with incredibly tight bounds. Using the connections we put forth, many of
these results can provide a stronger theoretical framework towards understanding projection-free
conditional gradient methods.

Related works of projection-free algorithms
[25] gives an analysis of FW for smooth objectives, and shows that FW converges at a O(1/T )
rate even when the linear oracle is solved approximately, under certain conditions. [30] develops
a block-wise update strategy for FW on the dual objective of structural SVM, where only a subset
of dual variables are updated at each iteration. In the algorithm, a smaller oracle is called due to
the block-wise update, which reduces the computational time per iteration and leads to the speedup
overall. [37] proposes updating multiple blocks at a time. [34] proposes using various measures to
select a block for update.

In another direction, some results have aimed at obtaining improved convergence rates. [14] shows
that for strongly convex and smooth objective functions, FW can achieve aO(1/T 2) convergence rate
over a strongly convex set. [13, 15] first show that one can achieve linear convergence for strongly
convex and smooth objectives over polytopes using a projection-free algorithm. The algorithm
constructs a stronger oracle which can be efficiently implemented for certain polytopes like simplex.
[29] shows that some variants of FW such as away-step FW [38] or pairwise FW enjoy an exponential
convergence rate when the feasible set is a polytope. [5] provides a refined analysis for the away-
step FW. [17] extends [29] to some saddle-point optimization problems, where the constraint set
is assumed to be a polytope and the objective is required to be strongly convex for one variable
and strongly concave for the other. A drawback of away-step FW [38] is that it requires storing the
previous outputs from the oracle. Very recently, [16] develop a new variant that avoids this issue
for specific polytopes, which also enjoys exponential convergence for strongly convex and smooth
objectives. Note that all of the exponential convergence results depend on some geometric properties
of the underlying polytope.

Other works include variants for stochastic setting [23], online learning setting [22], minimizing
some structural norms [19, 39], or reducing the number of gradient evaluations [32]. There is also a
connection between subgradient descent and FW; Bach [4] shows that for certain types of objectives,
subgradient descent applied to the primal domain is equivalent to FW applied to the dual domain.

Preliminaries and Notation

Definition 1: A convex set Y ⊆ Rm is an α-strongly convex set w.r.t. a norm ‖ · ‖ if for any
u, v ∈ Y , any θ ∈ [0, 1], the ‖ · ‖ ball centered at θu+ (1− θ)v with radius θ(1− θ)α2 ‖u− v‖

2 is
contained in Y . Please see [14] for examples about strongly-convex sets.

Definition 2 A function is β-strongly smooth w.r.t. a norm ‖ · ‖ if f is everywhere differentiable and
f(u) ≤ f(v) +∇f(v)>(u− v) + β

2 ‖u− v‖
2. A function is β-strongly convex w.r.t. a norm ‖ · ‖ if

f(u) ≥ f(v) +∇f(v)>(u− v) + β
2 ‖u− v‖

2.

Definition 3 For a convex function f(·), its Fenchel conjugate is f∗(x) := supy〈x, y〉 − f(y). Note
that if f is convex then so is its conjugate f∗, since it is defined as the maximum over linear functions
of x [6]. Furthermore, the biconjugate f∗∗ equals f if and only if f is closed and convex. It is known
that f is β-strongly convex w.r.t. ‖ · ‖ if and only if f∗ is 1/β strongly smooth w.r.t the dual norm
‖ · ‖∗ [26], assuming that f is a closed and convex function.
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2 Minimax Duality via No-Regret Learning

2.1 Brief review of online learning

In the task of online convex optimization, we assume a learner is provided with a compact and
convex set K ⊂ Rn known as the decision set. Then, in an online fashion, the learner is presented
with a sequence of T loss functions `1(·), `2(·), . . . , `T (·) : K → R. On each round t, the learner
must select a point xt ∈ K, and is then “charged” a loss of `t(xt) for this choice. Typically
it is assumed that, when the learner selects xt on round t, she has observed all loss functions
`1(·), . . . , `t−1(·) up to, but not including, time t. However, we will also consider learners that are
prescient, i.e. that can choose xt with knowledge of the loss functions up to and including time t.
The objective of interest in most of the online learning literature is the learner’s regret, defined as
RT :=

∑T
t=1 `t(xt)−minx∈K

∑T
t=1 `t(x). Oftentimes we will want to refer to the average regret,

or the regret normalized by the time horizon T , which we will callRT := RT

T . What has become a
cornerstone of online learning research has been the existence of no-regret algorithms, i.e. learning
strategies that guaranteeRT → 0 as T →∞.

Let us consider three very simple learning strategies, and we note the available guarantees for each.

(FollowTheLeader) Perhaps the most natural algorithm one might think of is to simply select xt as
the best point in hindsight. That is, the learner can choose xt = arg minx∈K

∑t−1
s=1 `s(x).

Lemma 1 ([21]). If each `t(·) is 1-lipschitz and 1-strongly convex, then FollowTheLeader achieves
RT ≤ c log TT for some constant c.

(BeTheLeader) When the learner is prescient, then we can do slightly better than FollowTheLeader
by incorporating the current loss function: xt = arg minx∈K

∑t
s=1 `s(x). This algorithm was named

BeTheLeader by [28], who also proved that it actually guarantees non-positive regret!

Lemma 2 ([28]). For any sequence of loss functions, BeTheLeader achievesRT ≤ 0.

(BestResponse) But perhaps the most trivial strategy for a prescient learner is to ignore the history
of the `s’s, and simply play the best choice of xt on the current round. We call this algorithm
BestResponse, defined as xt = arg minx∈K `t(x). A quick inspection reveals that BestResponse
satisfiesRT ≤ 0.

2.2 Minimax Duality

The celebrated minimax theorem for zero-sum games, first discovered by John von Neumann in the
1920s [36, 33], is certainly a foundational result in the theory of games. It states that two players,
playing a game with zero-sum payoffs, each have an optimal randomized strategy that can be played
obliviously – that is, even announcing their strategy in advance to an optimal opponent would not
damage their own respective payoff, in expectation.

In this paper we will focus on more general minimax result, establishing duality for a class of
convex/concave games, and we will show how this theorem can be proved without the need for
Brouwer’s Fixed Point Theorem [27]. The key inequality can be established through the use of
no-regret learning strategies in online convex optimization, which we detail in the following section.
The theorem below can be proved as well using Sion’s Minimax Theorem [35].
Theorem 1. Let X,Y be compact convex subsets of Rn and Rm respectively. Let g : X × Y → R
be convex in its first argument and concave in its second. Then we have that

min
x∈X

max
y∈Y

g(x, y) = max
y∈Y

min
x∈X

g(x, y) (1)

We want to emphasize that a meta-algorithm (Algorithm 1) actually emerges from our proof for
Theorem 1, please see the supplementary for details. It is important to point out that the meta
algorithm, as a routine for computing equlibria, is certainly not a novel technique, it has served
implicitly as the underpinning of many works, including those already mentioned [11, 9, 8].

We close this section by summarizing the approximate equilibrium computation guarantee that
follows from the above algorithm. This result is classical, and we explore it in great detail in the

3



Algorithm 1 Meta Algorithm for equilibrium computation

1: Input: convex-concave payoff g : X × Y → R, algorithms OAlgX and OAlgY

2: for t = 1, 2, . . . , T do
3: xt := OAlgX(g(·, y1), . . . , g(·, yt−1))

4: yt := OAlgY (g(x1, ·), . . . , g(xt−1, ·), g(xt, ·))
5: end for
6: Output: x̄T = 1

T

∑T
t=1 xt and ȳT := 1

T

∑T
t=1 yt

Appendix. We let x̄T := 1
T

∑T
t=1 xt and ȳT := 1

T

∑T
t=1 yt, and let V ∗ be the value of the game,

which is the quantity in (1).

Theorem 2. Algorithm 1 outputs x̄T and ȳT satisfying

max
y∈Y

g(x̄T , y) ≤ V ∗ + εT + δT and min
x∈X

g(x, ȳT ) ≥ V ∗ − (εT + δT ). (2)

as long as OAlgX and OAlgY guarantee average regret bounded by εT and δT , respectively.

3 Relation to the Frank-Wolfe Method

We now return our attention to the problem of constrained optimization, and we review the standard
Frank-Wolfe algorithm. We then use the technologies presented in the previous section to recast
Frank-Wolfe as an equilibrium computation, and we show that indeed the vanilla algorithm is an
instantiation of our meta-algorithm (Alg. 1). We then proceed to show that the modularity of the
minimax duality perspective allows us to immediately reproduce existing variants of Frank-Wolfe, as
well as construct new algorithms, with convergence rates provided immediately by Theorem 2.

To begin, let us assume that we have a compact set Y ⊂ Rn and a convex function f : Y → R. Our
primary goal is to solve the objective

min
y∈Y

f(y). (3)

We say that y0 is an ε-approximate solution as long as f(y0)−miny∈Y f(y) ≤ ε.

3.1 A Brief Overview of Frank-Wolfe

Algorithm 2 Standard Frank-Wolfe algorithm
1: Input: obj. f : Y → R, oracle O(·), learning rate {γt ∈ [0, 1]}t=1,2,..., init. w0 ∈ Y
2: for t = 1, 2, 3 . . . , T do
3: vt ← O(∇f(wt−1)) = arg min

v∈Y
〈v,∇f(wt−1)〉

4: wt ← (1− γt)wt−1 + γtvt.
5: end for
6: Output: wT

The standard Frank-Wolfe algorithm (Algorithm 2) consists of making repeated calls to a linear
optimization oracle (line 6), followed by a convex averaging step of the current iterate and the oracle’s
output (line 7). It initializes a w1 in the constraint set Y . Due to the convex combination step, the
iterate wt is always within the constraint set, which is the reason why it is called projection free. We
restate a proposition from [10], who established the convergence rate of their algorithm.

Theorem 3 ([10]). Assume that f(·) is 1-strongly smooth. If Algorithm 2 is run for T rounds, then
there exists a sequence {γt} such that the output wT is a O

(
1
T

)
-approximate solution to (3).

It is worth noting that the typical learning rate used throughout the literature is γt = 2
2+t [31, 25].

This emerges as the result of a recursive inequality.
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3.2 Frank-Wolfe via the Meta-Algorithm

We now show that the meta-algorithm generalizes Frank-Wolfe, and provides a much more modular
framework for producing similar algorithms. We will develop some of these novel methods and
establish their convergence via Theorem 2.

In order to utilize minimax duality, we have to define decision sets for two players, and we must
produce a convex-concave payoff function. First we will assume, for convenience, that f(y) :=∞ for
any y /∈ Y . That is, it takes the value∞ outside of the convex/compact set Y , which ensures that f
is lower semi-continuous and convex. Now, let the x-player be given the set X := {∇f(y) : y ∈ Y }.
One can check that the closure of the set X is a convex set. Please see Appendix 2 for the proof.

Theorem 4. The closure of (sub-)gradient space {∂f(y)|y ∈ Y } is a convex set.

The y-player’s decision set will be Y , the constraint set of the primary objective (3). The payoff
g(·, ·) will be defined as

g(x, y) := −x>y + f∗(x). (4)

The function f∗(·) is the Fenchel conjugate of f . We observe that g(x, y) is indeed linear, and hence
concave, in y, and it is also convex in x.

Let’s notice a few things about this particular game. Looking at the max min expression,

max
y∈Y

min
x∈X

g(x, y) = max
y∈Y

(
−max
x∈X

{
x>y − f∗(x)

})
= −

(
min
y∈Y

f(y)

)
= V ∗, (5)

which follows by the fact that f∗∗ = f .1 Note, crucially, that the last term above corresponds to the
objective we want to solve up to a minus sign. Any ȳ which is an ε-approximate equilibrium strategy
for the y-player will also be an ε-approximate solution to (3).

We now present the main result of this section, which is the connection between Frank-Wolfe (Alg. 2)
and Alg. 1.

Theorem 5. When both are run for exactly T rounds, the output ȳT of Algorithm 1 is identically
the output wT of Algorithm 2 as long as: (I) Init. x1 in Alg 1 equals ∇f(w0) in Alg. 2; (II)
Alg. 2 uses learning rate γt := 1

t ; (III) Alg. 1 receives g(·, ·) defined in (4); (IV) Alg. 1 sets
OAlgX := FollowTheLeader; (V) Alg. 1 sets OAlgY := BestResponse.

Proof. We will prove that the following three equalities are maintained throughout both algorithms.
We emphasize that the objects on the left correspond to Alg. 1 and those on the right to Alg. 2.

xt = ∇f(wt−1) (6)
yt = vt (7)
ȳt = wt. (8)

We first note that the first condition of the theorem ensures that (6) holds for t = 1. Second, the
choice of learning rate γt = 1

t already guarantees that (7) implies (8), since this choice of rate ensures
that wt is always a uniform average of the updates vt. It remains to establish (6) and (7) via induction.
We begin with the former.

Recall that xt is selected via FollowTheLeader against the sequence of loss functions `t(·) :=
g(·, yt). To write precisely what this means,

xt := arg minx∈X

{
1
t−1

∑t−1
s=1 `s(x)

}
= arg minx∈X

{
1
t−1

∑t−1
s=1(−y>s x+ f∗(x))

}
= arg max

x∈X

{
ȳ>t−1x− f∗(x)

}
= ∇f(ȳt−1).

The final line follows as a result of the Legendre transform [6]. Of course, by induction, we have that
ȳt−1 = wt−1, and hence we have established (6).

1It was important how we defined X here, as the fenchel conjugate takes the value of ∞ at any point
x /∈ {∇f(y) : y ∈ Y }, hence the unconstrained supremum is the same as maxx∈X(·)
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Finally, let us consider how yt is chosen according to BestResponse. Recall that sequence of loss
functions presented to the y-player is ht(·) := −g(xt, ·). Utilizing BestResponse for this sequence
implies that

yt = arg min
y∈Y

ht(y) = arg min
y∈Y

(
x>t y − f∗(xt)

)
= arg min

y∈Y

(
x>t y

)
((6) by induc.) = arg min

y∈Y
∇f(ȳt−1)>y = arg min

y∈Y
∇f(wt−1)>y ( which is vt).

Where the last equality follows by induction via (8). This completes the proof.

Note that the algorithm does not need to compute the conjugate, f∗. While the Frank-Wolfe
algorithm can be viewed as implicitly operating on the conjugate, it is only through the use of
arg maxx∈X

{
ȳ>t−1x− f∗(x)

}
. Yet, this operation does not need to be computed in the naive way

(i.e. by first computing f∗ and then doing the maximization). Instead, the expression actually boils
down to ∇f(y) which is just a gradient computation!

The equivalence we just established has several nice features. But it does not provide a convergence
rate for Algorithm 2. This should perhaps not be surprising, as nowhere did we even use the
smoothness of f anywhere in the equivalence. Instead, this actually follows via a key application
of Theorem 2, utilizing the fact that f∗ is strongly convex on the interior of the set X 2, granting
FollowTheLeader a logarithmic regret rate.

Corollary 1. Assume that f(·) is 1-strongly smooth. Then Algorithm 2, with learning rate γt := 1
t ,

outputs wT with approximation error O
(

log T
T

)
.

Proof. As a result of Theorem 5, we have established that Alg. 2 is a special case of Alg. 1, with the
parameters laid out in the previous theorem. As a result of Theorem 2, the approximation error of wT
is precisely the error εT + δT of the point ȳT when generated via Alg. 1 with subroutines OAlgX :=
FollowTheLeader and OAlgY = BestResponse, assuming that these two learning algorithms
guarantee average regret no more than εT and δT , respectively. We noted that BestResponse does
not suffer regret, so δT = 0.

To bound the regret of FollowTheLeader on the sequence of functions g(·, y1), . . . , g(·, yT ), we
observe that the smoothness of f implies that f∗ is 1-strongly convex, which in turn implies that
g(x, yt) = −x>yt + f∗(x) is also 1-strongly convex (in x). Hence Lemma 1 guarantees that
FollowTheLeader has average regret εT := O

(
log T
T

)
, which completes the proof.

We emphasize that the above result leans entirely on existing work on regret bounds for online
learning, and these tools are doing the heavy lifting. We explore this further in the following section.

4 Frank-Wolfe-style Algs, New and Old

We now have a factory for generating new algorithms using the approach laid out in Section 3.
Theorem 5 shows that the standard Frank-Wolfe algorithm (with a particular learning rate) is obtained
via the meta-algorithm using two particular online learning algorithms OAlgX ,OAlgY . But we
have full discretion to choose these two algorithms, as long as they provide the appropriate regret
guarantees to ensure convergence.

4.1 Cumulative Gradients

We begin with one simple variant, which we call Cumulative-Gradient Frank-Wolfe, laid out in
Algorithm 3. The one significant difference with vanilla Frank-Wolfe is that the linear optimization
oracle receives as input the average of the gradients obtained thus far, as opposed to the last one.

2 We only need to assume f is "smooth on the interior of Y " to get the result. (That f is technically not
smooth outside of Y is not particularly relevant) The result that f∗ is strongly convex on the interior of the set X
is essentially proven by [26] in their appendix. This argument has been made elsewhere in various forms in the
literature (e.g. [18]).
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Algorithm 3 Cumulative-Gradient Frank-Wolfe
1: Initialize: any w0 ∈ Y .
2: for t = 1, 2, 3 . . . , T do
3: vt ← arg min

v∈Y

〈
y, 1

t−1
∑t−1
s=1∇f(ws)

〉
4: wt ← (1− γt)wt−1 + γtvt.
5: end for
6: Output: wT

The proof of convergence requires little effort.
Corollary 2. Assume that f(·) is 1-strongly smooth. Then Algorithm 3, with learning rate γt := 1

t ,

outputs wT with approximation error O
(

log T
T

)
.

Proof. The result follows almost identically to Corollary 1. It requires a quick inspection to verify
that the new linear optimization subroutine corresponds to implementing BeTheLeader as OAlgY

instead of BestResponse. However, both BestResponse and BeTheLeader have non-positive
regret (δT ≤ 0) (Lemma 2 in the supplementary), and thus they achieve the same convergence.

We note that a similar algorithm to the above can be found in [31], although in their results they
consider more general weighted averages over the gradients.

4.2 Perturbation Methods and Stochastic Smoothing

Looking carefully at the proof of Corollary 1, the fact that FollowTheLeader was suitable for the
vanilla FW analysis relies heavily on the strong convexity of the functions `t(·) := g(·, yt), which
in turn results from the smoothness of f(·). But what about when f(·) is not smooth, is there an
alternative algorithm available?

We observe that one of the nice techniques to grow out of the online learning community is the
use of perturbations as a type of regularization to obtain vanishing regret guarantees [28] – their
method is known as Follow the Perturbed Leader (FTPL). The main idea is to solve an optimization
problem that has a random linear function added to the input, and to select3 as xt the expectation of
the arg min under this perturbation. More precisely,

xt := EZ
[
arg minx∈X

{
Z>x+

∑t−1
s=1 `s(x)

}]
.

Here Z is some random vector drawn according to an appropriately-chosen distribution and `s(x)
is the loss function of the x-player on round s; with the definition of payoff function g, `s(x) is
−x>ys + f∗(x) (4).

One can show that, as long as Z is chosen from the right distribution, then this algorithm guarantees
average regret on the order of O

(
1√
T

)
, although obtaining the correct dimension dependence relies

on careful probabilistic analysis. Recent work of [2] shows that the analysis of perturbation-style
algorithm reduces to curvature properties of a stochastically-smoothed Fenchel conjugate.

What is intriguing about this perturbation approach is that it ends up being equivalent to an existing
method proposed by [31] (Section 3.3), who also uses a stochastically smoothed objective function.
We note that

EZ
[
arg minx∈X

{
Z>x+

∑t−1
s=1 `s(x)

}]
= EZ

[
arg maxx∈X

{
(ȳt−1 + Z/(t− 1))>x− f∗(x)

}]
= EZ [∇f(ȳt−1 + Z/(t− 1))] = ∇f̃t−1(ȳt−1)

(9)
where f̃α(x) := E[f(x+ Z/α)]. [31] suggests using precisely this modified f̃ , and they prove a rate
on the order of O

(
1√
T

)
. As discussed, the same would follow from vanishing regret of FTPL.

3Technically speaking, the results of [28] only considered linear loss functions and hence their analysis did
not require taking averages over the input perturbation. While we will not address computational issues here due
to space, actually computing the average argmin is indeed non-trivial.
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4.3 Boundary Frank-Wolfe

Algorithm 4 Modified meta-algorithm, swapped roles

1: Input: convex-concave payoff g : X × Y → R, algorithms OAlgX and OAlgY

2: for t = 1, 2, . . . , T do
3: yt := OAlgY (g(x1, ·), . . . , g(xt−1, ·))
4: xt := OAlgX(g(·, y1), . . . , g(·, yt−1), g(·, yt))
5: end for
6: Output: x̄T = 1

T

∑T
t=1 xt and ȳT := 1

T

∑T
t=1 yt

We observe that the meta-algorithm previously discussed assumed that the x-player was first to act,
followed by the y-player who was allowed to be prescient. Here we reverse their roles, and we instead
allow the x-player to be prescient. The new meta-algorithm is described in Algorithm 4. We are
going to show that this framework lead to a new projection-free algorithm that works for non-smooth
objective functions. Specifically, if the constraint set is strongly convex, then this exhibits a novel
projection free algorithm that grants a O(log T/T ) convergence even for non-smooth objective
functions. The result relies on very recent work showing that FollowTheLeader for strongly convex
sets [24] grants a O(log T ) regret rate. Prior work has considered strongly convex decision sets
[14], yet with the additional assumption that the objective is smooth and strongly convex, leading to
O(1/T 2) convergence. Boundary Frank-Wolfe requires neither smoothness nor strong convexity of
the objective. What we have shown, essentially, is that a strongly convex boundary of the constraint
set can be used in place of smoothness of f(·) in order to achieve O(1/T ) convergence.

Algorithm 5 Boundary Frank-Wolfe
1: Input: objective f : Y → R, oracle O(·) for Y , init. y1 ∈ Y .
2: for t = 2, 3 . . . , T do
3: yt ← arg miny∈Y

1
t−1

∑t−1
s=1〈y, ∂f(ys)〉

4: end for
5: Output: ȳT = 1

T

∑T
t=1 yt

We may now prove a result about Algorithm 5 using the same techniques laid out in Theorem 5.
Theorem 6. Algorithm 5 is a instance of Algorithm 4 if (I) Init. y1 in Alg 5 equals y1 in Alg. 4;
(II) Alg. 1 sets OAlgY := FollowTheLeader; and (III) Alg. 1 sets OAlgX := BestResponse.
Furthermore, when Y is strongly convex, and

∑t
s=1 ∂f(ys) has non-zero norm, then

f(ȳT )−min
y∈Y

f(y) = O(
M log T

αLTT
)

where M := supy∈Y ‖∂f(y)‖, LT := min1≤t≤T ‖Θt‖, Θt =
∑t
s=1

1
t ∂f(ys).

Proof. Please see Appendix 3 for the proof.

Note that the rate depends crucially on LT , which is the smallest averaged-gradient norm computed
during the optimization. Depending on the underlying optimization problem, LT can be as small as
O(1/

√
T ) or can even be 0. Now let us discuss when the boundary FW works; namely, the condition

that causes the cumulative gradient being nonzero. If a linear combination of gradients is 0 then
clearly 0 is in the convex hull of subgradients ∂f(x) for boundary points x. Since the closure of
{∇f(x)|x ∈ Y } is convex, according to Theorem 4, this implies that 0 is in {∇f(x)|x ∈ Y }. If we
know in advance that 0 /∈ cl({∇f(x)|x ∈ Y }) we are assured that the cumulative gradient will not
be 0. Hence, the proposed algorithm may only be useful when it is known, a priori, that the solution
y∗ will occur not in the interior but on the boundary of Y . It is indeed an odd condition, but it does
hold in many typical scenarios. One may add a perturbed vector to the gradient and show that with
high probability, LT is a non-zero number. The downside of this approach is that it would generally
grant a slower convergence rate; it cannot achieve log(T )/T as the inclusion of the perturbation
requires managing an additional trade-off.
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