
On Frank-Wolfe and Equilibrium Computation
(Supplementary)

Jacob Abernethy
Georgia Institute of Technology

prof@gatech.edu

Jun-Kun Wang
Georgia Institute of Technology

jimwang@gatech.edu

1 Minimax Duality via No-Regret Learning

The celebrated minimax theorem for zero-sum games, first discovered by John von Neumann in the
1920s [14, 10], is certainly a foundational result in the theory of games. It states that two players,
playing a game with zero-sum payoffs, each have an optimal randomized strategy that can be played
obliviously – that is, even announcing their strategy in advance to an optimal opponent would not
damage their own respective payoff, in expectation. Or, if you are not fond of game theory, the
statement can be stated quite simply in terms of the order of operations of a particular two-stage
optimization problem: letting ∆n and ∆m be the n− and m−probability simplex, respectively, and
let M ∈ Rn×m be any real-valued matrix, then we have

min
x∈∆n

max
y∈∆m

x>My = max
y∈∆m

min
x∈∆n

x>My.

One way to view this equality statement as the conjunction of two inequalities. A quick inspection
tells us that min max ≥ max min is reasonably easy to prove in a sentence or two. But the other
direction is non-trivial, and von Neumann’s original proof rested on a deep result in topology, known
as Brouwer’s Fixed Point Theorem [6]. John Nash’s famous proof of the existence of equilibria in
general (non zero-sum) games was based on the same technology [9].

In this paper we will focus on a (simplified) generalization of the minimax result due to Maurice Sion
[13], and indeed we will show how this theorem can be proved without the need for Brouwer. The
key inequality can be established through the use of no-regret learning strategies in online convex
optimization, which we detail in the following section. To begin, we state Sion’s Minimax Theorem
in a slightly restricted setting.1

Theorem 1. Let X,Y be compact convex subsets of Rn and Rm respectively. Let g : X × Y → R
be convex in its first argument and concave in its second. Then we have that

min
x∈X

max
y∈Y

g(x, y) = max
y∈Y

min
x∈X

g(x, y) (1)

1.1 A Primer on No-Regret Algorithms

We now very briefly review the framework of online learning, online convex optimization, and
no-regret algorithms. For a more thorough exposition, we refer the reader to the excellent surveys of
[12], [3], and [1], among others.

In the task of online convex optimization, we assume a learner is provided with a compact and convex
set K ⊂ Rn known as the decision set. Then, in an online fashion, the learner is presented with a
sequence of T loss functions `1(·), `2(·), . . . , `T (·) : K → R. On each round t, the learner must
select a point xt ∈ K, and is then “charged” a loss of `t(xt) for this choice. Typically it is assumed

1In Sion’s fully general version, no finite-dimensional assumptions were required, the set Y need not be
compact, and g(x, ·) need only be quasi-concave and upper semicontinuous on Y , and g(·, y) quasi-convex and
lower semicontinuous on X .

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

that, when the learner selects xt on round t, she has observed all loss functions `1(·), . . . , `t−1(·) up
to, but not including, time t. However, we will also consider learners that are prescient, i.e. that can
choose xt with knowledge of the loss functions up to and including time t.

The objective of interest in most of the online learning literature is the learner’s regret, defined as

RT :=

T∑
t=1

`t(xt)−min
x∈K

T∑
t=1

`t(x).

Often times we will want to refer to the average regret, or the regret normalized by the time horizon
T , which we will callRT := RT

T . What has become a cornerstone of online learning research has
been the existence of no-regret algorithms, i.e. learning strategies that guaranteeRT → 0 as T →∞.
And in many cases these algorithms are at the same time efficient and aesthetically pleasing.

Let us consider three very simple learning strategies2, and we note the available guarantees for each.

(FollowTheLeader) Perhaps the most natural algorithm one might think of is to simply select xt as
the best point in hindsight. That is, the learner can choose

xt = arg min
x∈K

t−1∑
s=1

`s(x).

This algorithm, coined FollowTheLeader by [7], does not provide vanishing regret in general.
However, when every `t(·) is strongly convex w.r.t. L2, then we do obtain a non-trivial bound.

Lemma 1 ([4]). If each `t(·) is 1-lipschitz and 1-strongly convex, then FollowTheLeader achieves
RT ≤ c log T

T for some constant c.

(BeTheLeader) When the learner is prescient, then we can do slightly better than FollowTheLeader
by incorporating the current loss function:

xt = arg minx∈K
∑t
s=1 `s(x).

This algorithm was named BeTheLeader by [7], who also proved that it actually guarantees non-
positive regret!

Lemma 2 ([7]). For any sequence of loss functions, BeTheLeader achievesRT ≤ 0.

Proof. We induct on T . The base case T = 1 is trivial. The inductive step proceeds as follows:∑T
t=1 `t(xt) = `T (xT) +

∑T−1
t=1 `t(xt)

(by induc.) ≤ `T (xT) + minx∈K
∑T−1
t=1 `t(x)

(substitute xT) ≤ `T (xT) +
∑T−1
t=1 `t(xT)

(def’n of xT) = minx∈X
∑T
t=1 `t(x)

(BestResponse) But perhaps the most trivial strategy for a prescient learner is to ignore the history
of the `s’s, and simply play the best choice of xt on the current round. We call this algorithm
BestResponse, defined as xt = arg minx∈K `t(x). A quick inspection reveals that BestResponse
satisfiesRT ≤ 0.

1.2 Minimax Proof via No Regret

Let us now return our attention to the proof of Theorem 1. We will utilize the tools laid out in the
previous section.

2We observe that many algorithms we describe do not have a well-defined approach to choosing the initial
point x1, in which case x1 can be selected arbitrarily from the decision set. Also, whenever we specify
xt = argmin(. . .) and the solution set is non-unique then any minimizer is acceptable.

2

First, we note that one direction of the proof is straightforward. The inequality minx maxy ≥
maxy minx follows by a simple inspection, by noting that a minimizing player would certain prefer
to observe x before selection y. We now proceed to the other direction, which is far less trivial.

In order to prove the second inequality, we are going to imagine that the x-player and the y-player are
going to compete against each other, and each is going to choose their action according to some online
learning strategy (to be determined later). Let us imagine the following setup: for t = 1, 2, . . . , T the
x-learner chooses xt ∈ X and the y-learner selects yt ∈ Y . From the perspective of the x-learner,
on each round she is subject to a loss function `t(·) : X → R defined as `t(·) := g(·, yt). The
y-learner, on the other hand, observes her own sequence of loss functions ht(·) : Y → R, defined
as ht(·) := −g(xt, ·). Let us assume that both selected a learning algorithm that provides some
guarantee on the average regret. That is, the x-player is assured that her average regretRxT is upper
bounded by εT for any sequence of `t’s, and similarly the y-player has average regretRyT ≤ δT , for
two sequences {εT } and {δT }.

Let us now reason about the average cost to both players, 1
T

∑T
t=1 g(xt, yt), for playing according to

their chosen learning strategies. First, we use the y-player’s regret bound to obtain:

1

T

T∑
t=1

g(xt, yt) =
1

T

T∑
t=1

−ht(yt)

(def. ofRyT) = −min
y∈Y

{
1

T

T∑
t=1

ht(y)

}
−RyT

(reg. bound) ≥ max
y∈Y

{
1

T

T∑
t=1

g(xt, y)

}
− δT

(Jensen) ≥ max
y∈Y

g
(

1
T

∑T
t=1 xt, y

)
− δT (2)

≥ min
x∈X

max
y∈Y

g (x, y)− δT

Let us now apply the same argument on the right hand side, where we use the x-player’s regret
guarantee.

1

T

T∑
t=1

g(xt, yt) =
1

T

T∑
t=1

`t(xt)

= min
x∈X

{
1

T

T∑
t=1

`t(x)

}
+RxT

≤ min
x∈X

{
1

T

T∑
t=1

g(x, yt)

}
+ εT

≤ min
x∈X

g
(
x, 1

T

∑T
t=1 yt

)
+ εT (3)

≤ max
y∈Y

min
x∈X

g(x, y) + εT

If we combine the two inequalities

min
x∈X

max
y∈Y

g (x, y)− δT ≤ max
y∈Y

min
x∈X

g(x, y) + εT

However, as long as each player selected a no-regret strategy, the quantities εT and δT can be driven
arbitrarily close to 0. We may then conclude that

min
x∈X

max
y∈Y

g (x, y) ≤ max
y∈Y

min
x∈X

g(x, y)

and we are done.

3

2 Proof of Theorem 4

Proof. This is a result of the following lemmas.

Definition: [Definition 12.1 in [11]] A mapping T : Rn → Rn is called monotone if it has the
property that

〈v1 − v0, x1 − x0〉 ≥ 0 whenever v0 ∈ T (x0), v1 ∈ T (x1).

Moreover, T is maximal monotone if there is no monotone operator that properly contains it.

Lemma 2: [Theorem 12.17 in [11]] For a proper, lsc, convex function f , ∂f is a maximum monotone
operator.

Lemma 3: [Theorem 12.41 in [11]] For any maximal monotone mapping T , the set “domain of T“
is nearly convex, in the sense that there is a convex set C such that C ⊂ domain of T⊂ cl(C). The
same applies to the range of T .

Therefore, the closure of {∂f(y)|y ∈ Y)} is also convex, because we can define another proper,
lsc, convex function f̂(y) such that it is f̂(y) = f(y) if y ∈ Y ; otherwise, f̂(y) = ∞. Then, the
sub-differential of f̂(y) is equal to {∂f(y)|y ∈ Y }. So, we can apply the the lemmas to get the
result.

3 Proof of Theorem 6

Proof. The proof builds on the latest result of FTL for linear losses on strongly convex sets [5].
Recall that FTL plays

yt = arg min
y∈Y

t−1∑
s=1

〈y, `s〉 = arg min
y∈Y

t−1∑
s=1

〈y,−Θt−1〉 = arg max
y∈Y
〈y,Θt−1〉

where Θt−1 = −
∑t−1
s=1 `s. The analysis requires the solution obtained from FTL to be unique, which

requires that the cumulative loss Θt−1 bounded away from 0 for each t. Let us denote the support
function Φ(·) ≡ maxy∈Y 〈y, ·〉. The following theorem is what the boundary FW relies on.

Theorem 2. (Theorem 3.3 in [5]) Let Y ⊂ Rd be an α-strongly convex set. Let M = maxs ‖`s‖ and
assume that Φ(·) has a unique maximizer for each {Θt}∀t. Define LT := min1≤t≤T ‖Θt‖. Choose
y1 ∈ bd(Y). Then, after T rounds, the regret RT = 2M2

αLT
(1 + log(T)).

Equipped with the theorem, we can know proof the new result. Note that the y-player is facing a
sequence of loss functions ψt(·) := g(xt, ·) = 〈−xt, ·〉+ f∗(xt) in each round t. Since the y-player
plays FTL,

yt := arg max
y∈Y

1

t− 1

t−1∑
s=1

ψs(y) = arg max
y∈Y

1

t− 1

t−1∑
s=1

−x>s y + f∗(xs) = arg max
y∈Y

1

t− 1

t−1∑
s=1

−x>s y.

(4)

According to Theorem 2,

max
y∈Y

T∑
t=1

ψt(y)−
T∑
t=1

ψt(yt) ≤ O(
M log T

αLT
), (5)

where M here represents the upper bound of the gradient norm, as we will see soon.

So, (5) is equivalent to

1

T
max
y∈Y

T∑
t=1

g(xt, y)− 1

T

T∑
t=1

g(xt, yt) ≤ δT , (6)

4

where δT = O(M log T
αLTT

). This give us the following result

1

T

T∑
t=1

g(xt, yt) ≥
1

T
max
y∈Y

T∑
t=1

g(xt, y)− δT = max
y∈Y

1

T

T∑
t=1

g(xt, y)− δT

≥ max
y∈Y

g(

T∑
t=1

1

T
xt, y)− δT ≥ min

x∈X
max
y∈Y

g(x, y)− δT .

(7)

Now for the x-player, since it plays BestResponse

xt := arg min
x∈X

g(x, yt) = arg min
x∈X
{−y>t x+ f∗(x)} = arg max

x∈X
{y>t x− f∗(x)} = ∂f(yt). (8)

Then,

1

T

T∑
t=1

g(xt, yt) =
1

T

T∑
t=1

min
x∈X

g(x, yt) ≤
1

T

T∑
t=1

max
y∈Y

min
x∈X

g(x, y) = max
y∈Y

min
x∈X

g(x, y) (9)

Combining (7) and (9), we get

min
x∈X

max
y∈Y

g (x, y) ≤ max
y∈Y

min
x∈X

g(x, y) + δT .

Moreover, from (7) and using the fact that V ∗ = maxy∈Y minx∈X g(x, y) =
minx∈X maxy∈Y g(x, y), we have

V ∗ − δT ≤
1

T

T∑
t=1

g(xt, yt) =
1

T

T∑
t=1

min
x∈X

g(x, yt). (10)

We know that V ∗ = −miny∈Y f(y) by (5). Moreover, minx∈X g(x, yt) = −f(yt). Combining the
results and (10), we get

1

T

T∑
t=1

f(yt)−min
y∈Y

f(y) ≤ δT . (11)

Let ȳT = 1
T

∑T
t=1 yt. We now obtain the result by Jensen’s inequality.

f(ȳT)−min
y∈Y

f(y) ≤ δT = O(
M log T

αLTT
). (12)

4 Experiments

To justify the theoretical result, we implemented Algorithm 5 on real data. Our objective was to solve
a hinge-loss minimization problem over the L2 ball. The latter is indeed a strongly convex set.

minw:‖w‖2≤k
∑N
i=1 max(0, 1− liw>zi), (13)

where (zi, li) are the feature vector and label for sample i and w are the parameters to be learned.

The objective function is a non-smooth function. We compare the boundary FW (Algorithm 5) with
the smoothing algorithm in [8] which we’ve described in Section 4.2 and here we call it “smoothing
FW“. The original smoothing FW in [8] requires uniformly sampling points in the unit ball. For
implementation simplicity, we use Gaussian perturbation instead, which has the same effect in
smoothing a non-smooth function [2]. We conduct the experiment on three datasets: a9a, mushroom,
and phishing 3.

The figures show that boundary FW has a better convergence rate than smoothing FW. We also
note that the iteration cost of smoothing FW is much more expensive than boundary FW due to its
sampling and smoothing step.

3 Available on https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

5

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

0 10 20 30 40 50

iteration number

1

1.5

2

2.5

3

3.5

4

4.5

o
b
j
e
c
t
i
v
e

v
a
l
u
e

10
4

boundary FW

smoothing FW

(a) a9a

0 10 20 30 40 50

iteration number

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

o
b
j
e
c
t
i
v
e

v
a
l
u
e

boundary FW

smoothing FW

(b) mushroom

0 10 20 30 40 50

iteration number

0

0.5

1

1.5

2

2.5

3

o
b
j
e
c
t
i
v
e

v
a
l
u
e

10
4

boundary FW

smoothing FW

(c) phishing

Figure 1: The objective vs. number of iteration. For boundary FW, we plot f(ȳt).

5 Recorvering the standard Frank-Wolfe with the common step size

We recall that the step size of standard Frank-Wofle is γt = t
t+2 . Indeed, let us show that the

two-player zero-sum game framework can actually capture the FW with standard step size as well.
This time the loss functions faced by both players is modified through scaling by a multiplicative
factor. Specifically, in each round t, the loss function of the x-player is αt`t(·) : X → R, where
`t(·) := g(·, yt). The y-player, on the other hand, observes her own sequence of loss functions
αtht(·) : Y → R, where ht(·) := −g(xt, ·). Suppose there are T rounds, we requre that ΣTt=1αt =
T , where each αt ≥ 0 and each αt would be revealed when a learner receives the loss function in
round t. Considering the y-player,

1

T

T∑
t=1

αtg(xt, yt) =
1

T

T∑
t=1

−αtht(yt)

(def. ofRyT) = − 1

T
min
y∈Y

{
T∑
t=1

αtht(y)

}
−RyT

(reg. bound) ≥ max
y∈Y

{
1

T

T∑
t=1

αtg(xt, y)

}
− δT

(Jensen) ≥ max
y∈Y

g
(

1
T

∑T
t=1 αtxt, y

)
− δT (14)

≥ min
x∈X

max
y∈Y

g (x, y)− δT

Let us now apply the same argument using the x-player’s regret guarantee.

1

T

T∑
t=1

αtg(xt, yt) =
1

T

T∑
t=1

αt`t(xt)

= min
x∈X

{
T∑
t=1

1

T
αt`t(x)

}
+RxT

≤ min
x∈X

{
T∑
t=1

1

T
αtg(x, yt)

}
+ εT

≤ min
x∈X

g
(
x,
∑T
t=1

1
T αtyt

)
+ εT (15)

≤ max
y∈Y

min
x∈X

g(x, y) + εT

Theorem 3. 1
T

∑T
t=1 αtxt and 1

T

∑T
t=1 αtyt satisfying

max
y∈Y

g(
1

T

T∑
t=1

αtxt, y) ≤ V ∗ + εT + δT and min
x∈X

g(x,
1

T

T∑
t=1

αtyt) ≥ V ∗ − (εT + δT). (16)

6

as long as OAlgX and OAlgY guarantee average regret bounded by εT and δT , respectively.

We remind the readers of the standard Frank-Wolfe algorithm, with step size γt = 2
t+2 , described in

Algorithm 1.

Algorithm 1 Standard Frank-Wolfe algorithm
1: Input: obj. f : Y → R, oracle O(·), learning rate γt = 2

t+2 , init. w0 ∈ Y
2: for t = 0, 1, 2, 3 . . . , T do
3: vt ← O(∇f(wt)) = arg min

v∈Y
〈v,∇f(wt)〉

4: wt+1 ← (1− γt)wt + γtvt.
5: end for
6: Output: wT

We want to show the following meta-algorithm captures the standard Frank-Wofle with step size
γt = 2

t+2 .

Algorithm 2 Meta Algorithm for equilibrium computation

1: Input: convex-concave payoff g : X × Y → R, algorithms OAlgX and OAlgY ,
2: Require: ΣTt=1αt = T and each αt ≥ 0.
3: for t = 1, 2, . . . , T do
4: xt := OAlgX(α1g(·, y1), . . . , αt−1g(·, yt−1))

5: yt := OAlgY (α1g(x1, ·), . . . , αt−1g(xt−1, ·), αtg(xt, ·))
6: end for
7: Output: x̄T := 1

T

∑T
t=1 αtxt and ȳT := 1

T

∑T
t=1 αtyt

As before, we define
g(x, y) := −x>y + f∗(x). (17)

But, in each round, the loss function the x-learner receives is αt`t(·) := αtg(·, yt). The y-learner, on
the other hand, observes her loss functions αtht(·) := −αtg(xt, ·).
Theorem 4. Let α1 : α2 : · · · : αt : · · · : αT = 1 : 2 : · · · : t : · · · : T and that ΣTt=1αt = T and
αt ≥ 0,∀t.

When both are run for exactly T rounds, the output ȳT := 1
T

∑T
t=1 αtyt of Algorithm 2 is identically

the output wT of Algorithm 1 as long as: (I) Init. x1 in Alg 2 equals ∇f(w0) in Alg. 1; (II)
Alg. 1 uses learning rate γt := 2

t+2 ; (III) Alg. 2 receives g(·, ·) defined in (17); (IV) Alg. 2 sets
OAlgX := FollowTheLeader (V) Alg. 2 sets OAlgY := BestResponse.

Proof. One can show that in the standard Frank-Wolfe with step size γt = 2
t+2 ,

w1 = γ0v1 = v1

w2 = (1− γ1)γ0v1 + γ1v2 =
1

3
v1 +

2

3
v2

w3 = (1− γ2)(1− γ1)γ0v1 + (1− γ2)γ1v2 + γ2v3 =
1

6
v1 +

2

6
v2 +

3

6
v3

w4 =
3

30
v1 +

6

30
v2 +

9

30
v3 +

12

30
v4

. . .

(18)

We want to show that

xt = ∇f(wt−1) (19)
yt = vt (20)

t∑
s=1

αs

(
∑t
s=1 αs)

ys = wt (21)

7

Recall that xt is selected via FollowTheLeader against the sequence of loss functions αt`t(·) :=
αtg(·, yt),

xt := arg min
x∈X

{
1

t− 1

t−1∑
s=1

αs`s(x)

}

= arg min
x∈X

{
1

t− 1

t−1∑
s=1

αs(−y>s x+ f∗(x))

}

= arg min
x∈X

{
t−1∑
s=1

αs(−y>s x+ f∗(x))

}

= arg max
x∈X

{
t−1∑
s=1

αsy
>
s x− (

t−1∑
s=1

αs)f
∗(x))

}

= arg max
x∈X

{
t−1∑
s=1

αs

(
∑t−1
s=1 αs)

y>s x− f∗(x)

}

(22)

Given the sequence {αs} satisfies α1 : α2 : · · · : αt−1 = 1 : 2 : · · · : t − 1, it follows that xt =

∇f(
∑t−1
s=1

αs

(
∑t−1

s=1 αs)
ys) = ∇f(wt−1), since

∑t−1
s=1

αs

(
∑t−1

s=1 αs)
ys =

∑t−1
s=1

αs

(
∑t−1

s=1 αs)
vs = wt−1.

Finally,

yt = arg min
y∈Y

αtht(y) = arg min
y∈Y

αt
(
x>t y − f∗(xt)

)
= arg min

y∈Y
αt
(
x>t y

)
= arg min

y∈Y
∇f(

t−1∑
s=1

αs

(
∑t−1
s=1 αs)

ys)
>y = arg min

y∈Y
∇f(wt−1)>y (which is vt).

References
[1] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university press,

2006.

[2] John Duchi, Peter L. Bartlett, , and Martin Wainwright. Randomized smoothing for stochastic optimization.
SIAM Journal on Optimization, 2012.

[3] Elad Hazan. Introduction to online convex optimization. 2014.

[4] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization.
Machine Learning, 69(2-3):169–192, 2007.

[5] Ruitong Huang, Tor Lattimore, András György, and Csaba Szepesvari. Following the leader and fast rates
in linear prediction: Curved constraint sets and other regularities. 2016.

[6] Shizuo Kakutani. A generalization of brouwer’s fixed point theorem. 1941.

[7] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of Computer
and System Sciences, 71(3):291–307, 2005.

[8] Guanghui Lan. The complexity of large-scale convex programming under a linear optimization oracle.
https://arxiv.org/abs/1309.5550, 2013.

[9] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

[10] J von Neumann, Oskar Morgenstern, et al. Theory of games and economic behavior, 1944.

[11] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational analysis. Springer, 1998.

[12] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends R© in
Machine Learning, 4(2):107–194, 2012.

[13] Maurice Sion. On general minimax theorems. Pacific J. Math, 8(1):171–176, 1958.

[14] J v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–320, 1928.

8

	Minimax Duality via No-Regret Learning
	A Primer on No-Regret Algorithms
	Minimax Proof via No Regret

	Proof of Theorem 4
	Proof of Theorem 6
	Experiments
	Recorvering the standard Frank-Wolfe with the common step size

