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Abstract—Inspired by recent progress in parallel and dis-
tributed optimization, we propose parallel least-squares policy
iteration (parallel LSPI) in this paper. LSPI is a policy iteration
method to find an optimal policy for MDPs. As solving MDPs
with large state space is challenging and time demanding, we
propose a parallel variant of LSPI which is capable of leveraging
multiple computational resources. Preliminary analysis of our
proposed method shows that the sample complexity improved
from O(1/

√
n) towards O(1/

√
Mn) for each worker, where n

is the number of samples and M is the number of workers.
Experiments show the advantages of parallel LSPI comparing to
the standard non-parallel one.

I. INTRODUCTION

Learning an optimal policy for MDPs with large state space
has gained many interests recently [3], [24], [4], [25]. Different
from previous works, our proposed method is inspired by the
recent success in distributed optimization [13], [17], [20]. The
goal is to parallelize an existing policy iteration method called
least-squares policy iteration. The algorithm takes advantage
of the multi-core or multi-machine architecture, where each
worker (one per core or machine) individually executes a
fraction of episodes and estimates a parameter while a consen-
sus is maintained by parameter averaging. With the feedback
of global consensus, each worker can access the information
learned by other workers at the previous iterations. As the
result, the learning process of each individual worker can be
accelerated, as compared to learning alone.

Recently, there has been several works focusing on dis-
tributing the computational burden to many available com-
putational resources. For example, open-source toolkits like
GraphLab [17] and Petuum [20] implement parallel variants
of existing machine learning methods such as Lasso regres-
sion, Latent Dirichlet Allocation, Neural Net, and Matrix
Factorization. Yet, to our knowledge, these toolkits currently
lack libraries specially aiming at parallelization of sequential
prediction and learning. We bridge this gap by proposing a
parallel version of LSPI, which is a common policy iteration
method in reinforcement learning.

Our work is different from the works of multi-agent MDP
[1], [5]. In multi-agent MDP, a large, structured MDP is used
to model the corporation of agents. The actions, rewards, and
even states of the MDP can be factored into several subsystems
with each corresponding to subgroups of agents, while some
variables in a subsystem are shared with others. Each sub-
system then can be solved locally with message passing for
coordination with others, and can be solved in a centralized or
distributed way. In contrast, our work aims at answering the
following question: Given multiple computational resources,
how to efficiently solve an MDP? In our problem, each worker

faces the same MDP, and each worker communicates with
others about the estimated parameter during learning. Thus, our
work can be regarded as a complement to multi-agent MDP.

There exists some related works that share the same
goal with ours. Kretchmar [9] proposed to average the state-
action value function in parallel for sharing the experience
of workers, but the method was only designed for a simple
state problem with tabular representation. Li and Schuurmans
[21] studied how to parallelize several existing reinforcement
learning algorithms using Map-Reduce. They achieved the
goal by decomposing some matrix-vector multiplications in the
original algorithms so these decomposed computations can be
performed in parallel, which is different from a parallel variant
as we consider here. Perhaps the most closely related work to
ours is [18]. They parallelized the temporal difference (TD)
learning algorithm by allowing each worker to independently
run K episodes for T durations, then gathers the results to
initialize the weights for next iteration. Although their aim is
very similar to ours, one major concern in their work is that in
order to guarantee the result does not significantly deviate away
from that of its non-parallel counterpart, it is required that the
number of episodes K and number of workers M to be small.
In contrast, in our parallel LSPI, each worker can execute large
K number of episodes before communicating with others,
which is very important in practice because the consumption
of network bandwidth is then significantly reduced. In other
words, parallel LSPI allows each worker to individually collect
a large amount of samples before parameter mixing.

Our analysis on parallel LSPI shows that the correlation
between the learning processes of each individually learned
model can influence the effectiveness of the method. The com-
putation gains achieved with parallel LSPI is less significant
when there exists high correlation between workers. To deal
with this issue, a heuristic is proposed to encourage each
worker to explore (i.e. taking random action) more when it
collects samples, which increases the randomness and in turn
reduces correlation.

To summarize, we propose parallel LSPI to efficiently
solve an MDP through parallel programming. Our method
can also balance the communication overhead and required
number of iterations to find the optimal solution, which is
suitable for situation when only limited bandwidth is available.
We give some analysis for the proposed method and conduct
experiments to show its effectiveness on queueing networks
[3], [25] and persistent search and track [7] domains. The codes
to reproduce the experiments will be available online.



II. BACKGROUNDS

A. Preliminaries

A Markov decision process (MDP) [23], [22] is a 5-tuple
(S,A,P,R, γ), where S = {s1, s2, . . . , s|S|} is a set of states,
A = {a1, a2, . . . , a|A|} is a set of actions, P is the transition
matrix, where P(s, a, s′) is the transition probability to the next
state s′ when taking action a in state s, R is the reward matrix,
where r(s, a) is the reward of taking action a in state s, and
γ is the discount factor. A deterministic policy π maps each
state to a single action. The state value function Vπ(s) and the
state-action value function Qπ(s, a) underlying a policy π are
defined respectively as

Vπ(s) = Eat∼π,st∼P[
∞
Σ
t=0

γtrt|s0 = s], (1)

Qπ(s, a) = Eat∼π,st∼P[
∞
Σ
t=0

γtrt|s0 = s, a0 = a]. (2)

(2) can also be expressed as

Qπ(s, a) = Σ
s′∈S

P(s, a, s′)[r(s, a) + γQπ(s′, π(s′))], (3)

which is known as the Bellman equation, and the state-action
value function is the fixed point of the equation. Let us write
it in a matrix form,

Q = R + γPBπQ .
= TπQ, (4)

where Q and R are |S||A| dimensional vectors. An entry
P ((s, a), s′) in P ∈ R|S||A|×|S| is defined as P ((s, a), s′) =
P(s, a, s′), and an entry in Bπ ∈ R|S|×|S||A| is defined as
Bπ(s, (s, a)) = 1, if a = π(s).

For a large state-action space, we generally use compact
representation to approximate the action value,

Qπ(s, a) ≈ Q̂
π
(s, a) = φ(s, a)T θ, (5)

where φ(s, a) ∈ Rd is the feature vector of the state-action pair
(s, a), and θ ∈ Rd is the vector of weights for each dimension
and needs to be learned. Generally, d � |S||A|. We can also
write it in a matrix form: Q̂

π
= Φθ, where Φ is the feature

matrix with its row being φ(s, a)T .

The optimal action value Q∗(x, a) is the maximum of the
expected discounted rewards given the process starts from state
s and takes action a at the beginning. The optimal value
function V∗(x) is defined similarly, and is connected with
Q∗(x, a) by

V∗(x) = maxa∈AQ∗(x, a). (6)

The goal for solving MDP is to find an optimal policy. An
optimal policy π∗ maximizes the expected discounted rewards
in all states, as defined below,

π∗ = argmaxπV
π(s), ∀s ∈ S. (7)

From (6), we see that a greedy policy with respect to Q∗ (i.e.
choosing an action that maximizes Q∗(s, ·)) is optimal.

B. Least-Squares Policy Iteration (LSPI)

Policy iteration is an algorithm to learn an optimal policy
by iteratively performing policy evaluation and policy improve-
ment [23], [22]. In policy evaluation, the approximated state-
action value Q̂ under current policy π is computed. In policy
improvement, the (greedy) policy is updated based on the new
approximated state-action value. As function approximation
used in (5), Q̂

π
lies in the space spanned by the column space

of Φ. However, TπQπ may not lie in the feature space. Let
Φ(ΦTΦ)−1ΦT be the orthogonal projection to the space, the
following fix point equation is solved instead of (4)

Q̂
π
= Φ(ΦTΦ)−1ΦT (TπQ̂

π
), (8)

where Q̂
π

is parameterized by θ. After some manipulation [12],
the solution θ of the above equation can be shown as

θ = (ΦT (Φ− γPBπΦ))
−1ΦT R. (9)

Let us denote A = ΦT (Φ− γPBπΦ) and b = ΦT R, then, (9)
can be written as θ = A−1b.

LSPI [12] does not assume the knowledge of P and R. Still,
given the policy π, the samples can be collected along with
π. That is, sample are collected in the form (si, ai, ri, s

′
i, a

′
i),

where ai = π(si), s′i ∼ P(si, ai, ·), a′i = π(s′i), si+1 = s′i,
and ai+1 = a′i. Using the collected samples, A and b can be
approximated as

Â =
1

L

L

Σ
i=0

[φ(si, ai)(φ(si, ai)− γφ(s′i, a
′
i))

T ],

b̂ =
1

L

L

Σ
i=0

[φ(si, ai)ri].

(10)

When collecting samples, one typically uses ε-greedy policy.
With probability 1 − ε, an action is selected greedily with
respect to current Q̂

π
; and with probability ε, an action is

chosen randomly. The strategy tries to deal with the so-called
exploration and exploitation tradeoff [23], [22].

In LSPI, the original form [12] is an off-line algorithm. It
takes transitions as the input, which can come from the random
policy, and outputs the learned policy. Here we consider
the online version of LSPI [15], [7]. First, θ is initialized
arbitrarily. Then, samples are gathered by following the ε-
greedy policy π based on the most recent updated θ. For
each transition, Â and b̂ are incrementally updated using the
contribution of the new sample (si, ai, ri, s

′
i, a

′
i),

Â′ =Â+ φ(si, ai)(φ(si, ai)− γφ(s′i, a
′
i))

T ,

b̂′ =b̂+ φ(si, ai)ri.
(11)

After collecting a few samples, θ is updated through Â−1b̂. In
practice, one may add a small constant λ to the diagonals of Â
before calculating its inverse to prevent numerical instability.
Â and b̂ are then reset to zeros and new samples are collected
based on the updated ε-greedy policy π. The algorithm also
reuses the samples collected at previous iterations by switching
a′i to π(s′i), where π is the current policy. The procedure is
iteratively repeated for pre-specified number of iterations.



Algorithm 1 Parallel Least-Squared Policy Iteration (Parallel
LSPI)

Input: MDP \{P,R}, ε, number of iterations T , number of
episodes per iteration K, and number of workers M .
Each worker m initialize θm randomly and set Âm = 0,
b̂m = 0.
for t = 1 to T iterations do

for m = 1 to M workers do
(each work executes the following in parallel)
for k = 1 to K episodes do

Each worker collects samples by following ε-greedy
policy and incrementally updates Âm, b̂m by (11).

end for
For samples collected at t′ = 1, . . . , t − 1, a′i ←
argmaxa∈AQ̂

π
(s′i, a), ∀i

Updating θm = Â−1
m b̂m

Each worker m sends its θm to the master.
end for
The master reaches a consensus z = Σmθm/M and
broadcasts to all the workers.
Each worker sets θm = z and resets Âm, b̂m.

end for
Output: The most recent z.

III. PARALLEL LEAST-SQUARES POLICY ITERATION
(PARALLEL LSPI)

We propose the parallel least-squares policy iteration to
handle the large-scale learning problem. The setting is that
there are M workers (cores) available (either multiple ma-
chines or multiple cores on a single machine) for computations.
To fully exploit the available computational resources, each
worker m collects samples and runs by itself, and then updates
its estimated Â−1

m , b̂m, and θm. At some point during learning,
it communicates the learned θm with other workers.

The algorithm is shown in Algorithm 1. For every outer
iteration t, each worker m individually collects samples by
following ε-greedy over K episodes. When collecting samples,
each worker also incrementally updates Âm and b̂m. After
conducting K episodes of learning, each worker also reuses
the samples collected at previous iteration to updates Âm and
b̂m. Then, each worker updates θm and sends it to the master.
The master then averages the models to obtain the consensus z
and broadcasts it to all the workers. The workers then update
the policy with the new consensus and proceed to the next
iteration. After T iterations, parallel-LSPI outputs the most
recent consensus zT .

In parallel LSPI, each worker m communicates to the
master only after updating its estimator θm, which occurs when
it has executed sufficient number episodes. This is the strategy
that balances between communication overheads and required
iterations to the optimal solution. If the algorithm dictates each
worker to communicate right after every episode, communica-
tions overheads becomes heavy. If each worker independently
runs the episodes during training and the parameters are only
averaged at the end, the communication overhead would be
minimized but it may not lead to satisfactory results as the
information from other workers is completely ignored during
training. Thus, a better strategy is to strike a balance between

the two extreme. Compared to the related work of parallel TD
[18] that only allows small K (roughly K < 5), the proposed
parallel LSPI can reduce communication cost by allowing the
workers to run sufficient amount of episodes before mixing.
Note that the underlying core of LSPI is least-squares temporal
difference learning (LSTD Q), which is naturally a batch
method in contrast to TD learning. Therefore, it does not need
to update θ for every transition as TD learning does. Thus,
parallel LSPI naturally enjoys the benefit of parallelization
without the burden of frequent communication.

IV. ANALYSIS

Here we analyze the sample complexity of the proposed
method. As [11] for non-parallel LSPI did, the analysis is
first performed on a version of LSTD called pathwise-LSTD
for policy evaluation. It analyzes LSTD at the states along
a sampled trajectory following a given policy. As there are
M workers (and M trajectories) with parameter averaging
conducted in our case, we have to analyze the averaged es-
timated parameters from the trajectories. Then, by the strategy
stated in [11], one may generalize the analysis over entire
state space under certain condition and derive the finite-sample
bound of parallel LSPI in turn. Thus, here we focus on parallel
pathwise-LSTD as the insight on the sample complexity can
already be seen in this step.

Before explaining pathwise-LSTD (see also [11]), let us
first describe the notations. As an MDP is reduced to a Markov
chain given a policy π, let (X1, X2, . . . , Xn) be a trajectory of
size n generated by the Markov chain. With abuse of notation
1, we denote Φ = [φ(X1)

T ; . . . ;φ(Xn)
T ] as the feature matrix

defined along the trajectory. The estimated value function is
thus constrained on the feature space F = {Φθ, θ ∈ Rd}.
Pathwise-LSTD takes the feature matrix Φ generated by a
trajectory following π as input. It builds the empirical tran-
sition matrix P̂ : P̂ij = I{j = i + 1, j 6= n}, and sets the
quantities A = ΦT (I−γP̂ )Φ, and b = ΦT r. It then outputs the
solution θ̂ = A+b with minimum norm, where A+ represents
the Moore-Penrose pseudo-inverse of A.

Let us denote v, v̂ as the value function and its estimated
one along the trajectory {Xt}nt=1, and ‖f‖2n = 1

n

n

Σ
t=1

f(Xt)
2

as the empirical norm. Moreover, let Vmax represent the
maximum of the value function, Π̂ be the projection to the
feature space, and ν be the smallest positive eigenvalue of the
Gram matrix ΦTΦ/n. From Theorem 1 in [11], ‖v − v̂‖n is
bounded as

‖v − v̂‖n ≤
1√

1− γ2
‖v − Π̂v‖n

+
1

1− γ
[γVmaxL

√
d

ν
(

√
8log(2d/δ)

n
+

1

n
)],

(12)

with high probability 1− δ.

For parallel pathwise-LSTD, denote (X1,m, X2,m , . . . ,
Xn,m) as the mth trajectory of the Markov chain induced
by a policy π, Φm = [φ(X1,m)T ; . . . ;φ(Xn,m)T ] as the
corresponding feature matrix, and νm as the smallest positive

1The analysis can be extended to action value function as well, for brevity,
we just use value function here.



eigenvalue of the corresponding sample based Gram matrix
of features. Moreover, let θ̂m represent the pathwise solution
of the trajectory m, and vm, v̂m = Φmθ̂m represent the
value function and the estimated one at the states along
trajectory m respectively. Since parallel LSPI conducts pa-
rameter averaging, we are interested in the sample complexity
associated with the averaged estimator θ̂ = Σmθ̂m/M . Let π′

represent the new policy at the next iteration of parallel LSPI
and X ′

1, X
′
2, . . . , X

′
n be the trajectory of the Markov chain

following π′ with Φ′ being the corresponding feature matrix.
Then, we want to analyze the quantity ‖v′−Φ′θ̂‖n as it would
give us insight on the sample complexity. To estimate the upper
bound ‖v′ − Φ′θ̂‖n, we make the following assumption that
connects the performance of θm evaluated at the new trajectory
{X ′

t}nt=1 to the one evaluated at the original {Xt,m}nt=1 where
θm is estimated from.

Assumption There exists a constant c such that the
empirical norm of the difference between value function v′ and
the one implied by θm evaluated at the trajectory {X ′

t}nt=1 is
upper bounded as ‖v′ − Φ′θ̂m‖2n ≤ c2‖vm − Φmθ̂m‖2n.

Notice that the empirical norms on both sides of the
inequality are evaluated at different trajectories; the left hand
side is on {X ′

t}nt=1, while the right hand side is on {Xt,m}nt=1

for an m. Using the assumption, we can bound ‖v′ − Φ′θ̂‖n,
which measures the performance of the averaged estimator.

Proposition Following the above assumptions, if (v′ −
Φ′θ̂m) of each m is near orthogonal, we have

‖v′ − Φ′θ̂‖n ≤
c√

M(1− γ2)
Maxm{‖vm −Πmvm‖n}+

+
c

1− γ
[γVmaxL

√
d

νmin
(

√
8log(2d/δ)

Mn
+

1

n
√
M

)],

(13)
where νmin represents the smallest of the νm, and Maxm

{‖vm−Πmvm‖n} represents the largest of the ‖vm−Πmvm‖n
terms. If (v′ − Φ′θ̂m) are highly correlated, we have

‖v′ − Φ′θ̂‖n ≤
1√

1− γ2
Maxm{‖vm −Πmvm‖n}

+
1

1− γ
[γVmaxL

√
d

νmin
(

√
8log(2d/δ)

n
+

1

n
)].

(14)

The proposition suggests that, for the ideal case, parallel
LSTD can estimate the value function at an improved rate
O(1/

√
Mn) of each worker comparing to the original rate

of O(1/
√
n). This implies that the effectiveness of process

in which M workers collect some n/M samples in parallel
is comparable to a single worker collecting n number of
samples. Yet, the sampling is conducted in a distributed fashion
in parallel LSTD as compared to standard LSTD. At the
other extreme, for the worst case scenario, parallel LSTD
has the same sample rate, O(1/

√
n), for each worker as that

of standard LSTD. Yet, each worker individually collects n
samples meaning that the total samples in parallel LSTD are
M times larger than that of the non-paralleled one.

Proof: First, let us rewrite ‖v′−Φ′θ̂‖2n as 1
M2 ‖

M

Σ
m=1

(v′−
Φ′θ̂m)‖2n. Suppose, for each m, (v′ −Φ′θ̂m) is nearly mutual

orthogonal. Then, we have

1

M2
‖

M

Σ
m=1

(v′ − Φ′θ̂m)‖2n ≈
1

M2

M

Σ
m=1
‖(v′ − Φ′θ̂m)‖2n

≤ c2

M2

M

Σ
m=1
‖(vm − Φmθ̂m)‖2n ≤

c2

M
G2,

(15)

where

G =
1√

1− γ2
Maxm{‖vm −Πmvm‖n}+

+
1

1− γ
[γVmaxL

√
d

νmin
(

√
8log(2d/δ)

n
+

1

n
)].

(16)

Taking square root on both sides gives us the result.

In contrast, if all (v′−Φ′θ̂m) are highly correlated, we have

‖v′ − Φ′θ̂‖2n ≈ 1
M2 ‖

M

Σ
k=1

(vm − Φ′θ̂m)‖2n = ‖(vm − Φ′θ̂m)‖2n,
which reduces to the case of a single worker.

To achieve better performance for parallel LSPI, according
to the proposition, we should make (v′ − Φ′θ̂m) as less
correlated to each other as possible. However, (v′ − Φ′θ̂m)
is unknown in advance. To deal with the issue, a heuristic is
used to enforce each worker to take random actions more when
collecting samples. Since ε-greedy is adopted here, a larger ε
that encourages more exploration (i.e. randomly choosing an
action) will bring us closer to the goal. If ε gets close to zero,
the randomness would mostly comes from the transitions P of
the process. In this case, performance of parallel LSPI may
not achieve significant speedup, depending on the underlying
MDP and the feature space. Note that the degree of correlation
between θ̂m is not equivalent to the degree of the correlation
between (v′ − Φ′θ̂m). Still, our experiments reveal that such
heuristic does have positive effect on the performance.

V. EXPERIMENTS

A. Domains

We conduct the experiments on two domains. One is the
discrete-time four-dimensional queuing network, which also
appears in [3], [25]. Figure 1 illustrates the network, which
includes four queues, each with buffer size B. Here server 1
can only serve queue 1 or 4, and server 2 can only serves queue
2 or 3 one at a time but not simultaneously. Each server can
only handle one customer at a time at most. Moreover, neither
server can be idle. Let the tuple {a1, a2, a3, a4} represents
an action combination which the servers take by considering
conditions in the queues {q1, q2, q3, q4}, where ai = {1, 0}
indicates whether qi is currently being served or not. Then,
there are total four actions {1, 1, 0, 0} {0, 1, 0, 1} {1, 0, 1, 0}
{0, 0, 1, 1} the servers can take. As the result, the number of
states is (1+B)4×4, which means that a modest B will result
in a huge state space.

The dynamics of the network are defined by the rate
parameters µ1, µ3, d1, d2, d3, d4 ∈ (0, 1), all follow Bernoulli
distribution. µ1 and µ3 are coming rates of new customers. At
each time step, with probability µi, a new customer comes to
queue i. di is defined as follows: if ai = 1, which indicates
queue i is being served, the server would succeed in handling
a customer with probability di before the next time step, and
fail with probability 1− di. Starting with empty queues, each



Fig. 1. The discrete-time four dimensional queuing network [3], [25].
Customers can arrive at q1 or q3. The customer that is served and finished by
q1/q3 is then referred to q2/q4.

episode spans a fixed number of time steps, T . The goal is to
minimize the average of total waiting (unserved) customers in
the network during an episode. The loss for a state-action pair
is defined as l(s, a) = l(s) = |X|, which is the total number
of unserved customers in all the queues. After an episode, the
network is reset to empty and a new episode begins.

We consider four types of networks:
1) µ1 = 0.5, µ3 = 0.5, d1 = 0.5, d2 = 0.8, d3 = 0.8, d4 = 0.5,
episode duration T = 50, and buffer size B = 5, which results
in 5, 184 state-action pairs.
2) µ1 = 0.5, µ3 = 0.8, d1 = 0.5, d2 = 0.1, d3 = 0.8, d4 = 0.8,
episode duration T = 100, and buffer size B = 10, which
results in 58, 564 state-action pairs.
3) µ1 = 0.4, µ3 = 0.4, d1 = 0.5, d2 = 0.8, d3 = 0.3, d4 = 0.3,
episode duration T = 200, and buffer size B = 15, which
results in 262, 144 state-action pairs.
4) µ1 = 0.4, µ3 = 0.4, d1 = 0.4, d2 = 0.8, d3 = 0.8, d4 = 0.4,
episode duration T = 200, and buffer size B = 15, which
results in 262, 144 state-action pairs.
We design 340-dimensional sparse binary feature for type 1
network and 1048-dimensional features for the others. In our
design, only two entries in the feature are non-zeros for each
state-action pair.

Another domain is the persistent search and track [7]. The
scenario is that there are three Unmanned Aerial Vehicles
(UAV) to corporate for a mission. There are three available
actions for each UAV: {advance, retreat, loiter}, resulting
in 27 total possible action combinations. The current state
of a UAV is described by : location, fuel, actuator status,
and camera status. The goal is to fly to the target site and
perform surveillance, while ensuring that there is a UAV with
a working actuator loitering at the intermediary site to transfer
the information of the targets to the base.

We modify the scenario in [7] because the reported per-
formance of LSPI is not good in the original setting. Each
UAV starts from the base with 6 units of fuels. The camera
and actuator of each UAV can may with a 3% probability
at each time step. The camera cannot function under failed
actuator, so a UAV with a failed actuator cannot perform
surveillance. Yet, a UAV can perform communication even
its camera malfunctions. A successful surveillance mission
must have at least one UAV with working actuator at the
intermediary site, and at least one UAV with working actuator
and camera at the surveillance site. At each time step, each
UAV loses 1 unit of fuel except when it “loiters” at the base
or at the intermediary site. When a UAV “loiters” at the base,
the failed camera and actuator are fixed, and the fuels are
recharged fully. When a UAV with working actuator “loiters”
at the intermediary site, the messages is transmitted to the base

Fig. 2. Persistent search and track.

and UAV’s fuel tank is recharged by 2 units (the fuel cannot
exceed the capacity, which is 6 units). If a UAV “retreats”
at the base, then it may “advance” to the intermediary site or
“loiter” at the base with equal probability. Executing “advance”
action at the surveillance site has similar effect. The reward
for each state-action pair is defined as r(s, a) = 15×Icomm×
Isurv−10×Icrash−(18− total remained fuels), where Icomm

indicates whether there is a UAV with working actuator at
the intermediary site, Isurv indicates whether there is a UAV
with working actuator and camera at the surveillance site, and
Icrash represents whether a UAV crashes. If a UAV runs out
of fuel, which means it crashes, the episode is terminated. In
total, the state-action pair has the size of about 1.6× 106, and
about 2000-dimensional sparse binary feature including fixed
sparse representation [7] is used.

B. Setup and Results

We compare parallel LSPI with standard LSPI on the
two domains. Both methods are implemented in C and the
communication in parallel LSPI is implemented with MPI.
For parallel LSPI, we report the performance of M = 4 and
M = 8 workers. In our implementation, parallel LSPI uses
single core machines, yet the shared-memory architecture (i.e.
multi-core on a single machine) is also applicable. For the
queuing network domain, LSPI and parallel-LSPI update their
policies every 100 episodes, and both of them terminate after
learning 1000 episodes, which corresponds to K = 100 and
T = 10 in the algorithm. For persistent search and track,
both LSPI and parallel-LSPI update their policies every 1000
episodes, and terminate after 10,000 episodes. We set γ = 0.95
for both domains. All the experiments are repeated 50 runs
with the averaged results and standard deviations reported.

We also try different ε for ε-greedy policy. Higher ε means
each worker takes random action with higher probability,
which could reduce the correlation between workers. The
results for the queuing network are shown in Figure 3, and
results for persistent search and track are shown in Figure 4.
The learned parameter θ is recorded when it is updated, so
each point on the line represents the performance of learned
parameter at the end of an iteration of the corresponding
algorithm. For parallel LSPI, we record the consensus as the
the learned parameter. The performance of a learned parameter
in the queuing network domain is measured by the average of
losses (where loss of an episode is defined as the average of
all waiting customers in the network during an episode) over
additional 500 episodes, which are conducted by following
the deterministic policy implied by the learned parameter.
In persistent search and track domain, the performance is
measured by cumulated discounted rewards, with the same
evaluation procedure as the queueing network.

Figure 3 suggests for queueing network, higher ε yields



(a) 0.7-greedy in type 1 network (b) 0.5-greedy in type 1 network (c) 0.2-greedy in type 1 network

(d) 0.7-greedy in type 2 network (e) 0.5-greedy in type 2 network (f) 0.2-greedy in type 2 network

(g) 0.7-greedy in type 3 network (h) 0.5-greedy in type 3 network (i) 0.2-greedy in type 3 network

(j) 0.7-greedy in type 4 network (k) 0.5-greedy in type 4 network (l) 0.2-greedy in type 4 network

Fig. 3. Losses of the learned parameter versus learning time. Each row corresponds to a network, while each column corresponds to different ε. Star marker
represents LSPI, circle marker represents parallel LSPI with four workers, and square marker represents parallel LSPI with eight workers. The 0.5 s.e. error bars
are also plotted.

better parallelization since the correlation between workers is
smaller. At higher ε (left column), which encourages taking
random action more during learning, parallel LSPI can sig-
nificantly accelerate the learning process comparing to taking
action more greedily with respect to the current estimated state-
action value (right column). For parallel-LSPI with 0.7 or 0.5-
greedy, after running three or four iterations, it already reaches
the point where the standard LSPI needs to take ten iterations
or more. For 0.2-greedy in network 3 and 4, parallel LSPI
has no advantage while consumes more computation resources
than non-parallelized one each iteration. For persistent and
search domain, parallel-LSPI with ε = 0.1-greedy already
achieves significant speedup than its non-parallel counterpart,

increasing ε can accelerate further but not much more. This
reflects the limitation of the proposed heuristic, yet parallel-
LSPI still shows the benefit of parallelization. The overhead
of parallelization can also be seen on the figures. We can see
that parallel LSPI requires slightly more time to finish the
same amount of iterations than standard LSPI does due to
communication overhead. Yet, this overhead is tolerable since
parallel LSPI usually reaches at the same level of performance
as standard LSPI with much fewer iterations.

From the figures, we also observe that the advantage of
parallelization decreases as the number of workers increases
(4 workers vs. 8 workers). The acceleration by doubling



(a) 0.1-greedy (b) 0.2-greedy (c) 0.35-greedy

Fig. 4. Rewards of the learned parameter in persistent search and track domain versus learning time. The 0.5 s.e. error bars are also plotted.

the workers is incremental in most of the cases. A possible
explanation is that the correlation between workers is likely to
increase with more workers being added. Similar to the parallel
TD [18], the degree of parallelization of our method still has
some room for improvement. This limitation is not explicitly
implied in our analysis since we just show the ideal case and
the worst case. That says, the connection between the degree of
possible parallelization and the properties of underlying MDPs
and feature space needs to be further explored. We leave it as
a future work.

VI. CONCLUSION

We consider parallel LSPI, which is inspired by recent suc-
cess in parallel optimization. Our method allows each worker
to execute a sufficient number of episodes before parameter
averaging. Parameter averaging is conducted upon all workers
updating their estimated parameters for each iteration. We also
provide some analysis of the method. We show that parallel
LSPI can enjoy an improved rate from O(1/

√
n) towards

O(1/
√
Mn) for each worker. Further theoretical analysis

needs to be explored more.

There are a few potential future works. For example, par-
allelizing LSPI with regularization can be considered. Though
the features we used for the domains in our experiments are
already sparse, in some situation where high dimensions of
features is used, one may resort to l1 regularization. There are
growing number of related works about sparse least squares
temporal difference learning [2], [10], [8], [14], [6], [19].
It is interesting to investigate how to combine the different
ideas into parallel LSPI. Another improvements comes from
reducing the communication overhead during learning. There
is some related works in distributed optimization literature
that tackles this problem, such as [20]. Moreover, distributed
variants of other existing reinforcement learning methods can
be considered as well.
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