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Abstract—This paper presents two strategies to speed up
the alternating direction method of multipliers (ADMM) for
distributed data. In the first method, inspired by stochastic
gradient descent, each machine uses only a subset of its data
at the first few iterations, speeding up those iterations. A key
result is in proving that despite this approximation, our method
enjoys the same convergence rate in terms of the number of
iterations as the standard ADMM, and hence is faster overall.
The second method also follows the idea of sampling a subset
of the data to update the model before the communication of
each round. It converts an objective to the approximated dual
form and performs ADMM on the dual. The method turns out to
be a distributed variant of the recently proposed SDCA-ADMM.
Yet, compared to the straightforward distributed implementation
of SDCA-ADMM, the proposed method enjoys less frequent
communication between machines, better memory usage, and
lighter computational demand. Experiments demonstrate the
effectiveness of our two strategies.

I. INTRODUCTION

We consider training a classifier using a large, distributed
data set. Because the data are distributed across different
machines and are too big to relocate, a distributed optimization
model is the most efficient means to train a classifier. The
alternating direction method of multipliers (ADMM), in which
each local machine updates its learned model and a master
machine tries to reach a consensus, has been shown to be a
particularly effective method for distributed optimization [5],
[24]. We consider a setting with g machines such that each
machine m learns a model wm from its local data Nm. The
learned models wm are required to agree with each other
to form a consensus c. Mathematically, we are interested in
solving the following linear classification problem,

minimize
w1,...,wg,c

g

Σ
m=1

Σ
i∈Nm

C max(1− liw>mzi, 0)2 +
1

2
‖c‖22

s.t. wm − c = 0,∀j,
(1)

where (li ∈ R, zi ∈ Rp) is a label/feature pair of the ith
sample on machine m, and C controls the regularization effect.
Although squared hinge loss is shown here, the objective is in
fact general and other types of loss function can be utilized.
For example, if squared loss is chosen, the objective becomes
a regression problem.

Prior work on using ADMM for distributed data observed
that the update of wm at each iteration is similar to the stan-
dard SVM formulation, and hence stochastic dual coordinate
ascent [10] could be adapted to solve ADMM for distributed
data [24]. In this approach, however, several “inner” iterations

are required to obtain wm at each iteration of ADMM. When
the data on each local machine are large, the computational
cost for one pass over the full local data set drastically
increases, making the update of wm quite expensive. In this
paper, we propose two sampling-based methods to speed up
ADMM for large distributed data.

Our first method is inspired by the use of sampling in
stochastic gradient descent (SGD) [3], an effective method for
solving large-scale optimization problems. At each iteration,
instead of using all the data as in traditional gradient descent,
SGD samples an instance to compute the gradient. It is known
that only a few samples are needed for SGD to achieve
sufficient descent of the objective at the beginning. To achieve
a similar effect in ADMM, we propose that at the first few
iterations, each local machine uses only a subset of its data
(instead of using all its data) to update its model. For example,
at the first iteration, each machine m samples half of its data
to compute wm. Then, the sample size is increased for the next
iteration, and eventually each machine utilizes all of its local
data. The method requires fewer computations at the first few
iterations, and therefore can achieve faster convergence, due to
cheaper iteration costs at the beginning. More importantly, we
provide a theorem to show that the method enjoys the same
convergence rate in terms of the number of the iterations as
the standard ADMM.

Our second sampling-based method for speeding up the
use of ADMM for solving objective (1) converts the objective
to the dual domain. As each dual variable corresponds to a
sample, sampling a subset of samples to update the model
becomes easier and more natural than when done in the primal
domain. The algorithm for performing ADMM on the dual
of objective (1) turns out to be equivalent to the recently
proposed SDCA-ADMM [18], which was originally proposed
for solving objectives with complex regularizations (e.g., group
lasso [11], graph guided SVM [14]) by combining ADMM and
stochastic dual coordinate ascent (SDCA) [15], [16]. However,
these works do not consider generalizing the method for use
with distributed data, and in fact, a straightforward distributed
implementation would suffer from frequent communication be-
tween machines, poor memory usage, and heavy computational
demand. We show how to overcome these problems, achieving
an efficient implementation for distributed data.

To summarize, our contributions are 1) proposing a simple,
easy to implement, yet effective way to accelerate ADMM
for distributed data with a theoretical guarantee; 2) proposing
running ADMM on the dual of the objective and showing
the advantages of doing so; and 3) describing an efficient



implementation of ADMM on the dual and showing the
effectiveness of both methods on several binary classification
datasets. The code to reproduce the experiments is available on
https://github.com/j123456/dis sdcaadmm through an anony-
mous id.

II. BACKGROUND

We begin by describing how to apply ADMM in a dis-
tributed environment [5], [24]. The augmented Lagrangian of
objective (1) is

Lρ(w, c, λ) =
g

Σ
j=1

Σ
i∈Nm

C max(1− liw>mzi, 0)2 +
1

2
‖c‖22

+
g

Σ
j=1

(
ρ

2
‖wm − c‖22 + λ>m(wm − c)).

(2)
The algorithm in ADMM consists of

w(t+1) = argminwLρ(w, c
(t), λ(t)), (3)

c(t+1) = argmincLρ(w
(t+1), c, λ(t)), (4)

λ(t+1)
m = λ(t)

m + ρ(w(t+1)
m − c(t+1)), (5)

where k is the iteration index, w is {w1, . . . , wg}, and λ is
{λ1, . . . , λg}. After solving (3), we get

w(t+1)
m = argminwC Σ

i∈Nm

max(1− liw>zi, 0)2

+
ρ

2
‖w − c(t)‖22 + λ>m(w − c(t)),

(6)

for each machine m. And (4) has a closed form,

c(t+1) =
ρΣgm=1w

(t+1)
m + Σgm=1λ

>
m

gρ+ 1
. (7)

Objective (6) is similar to the objective of a standard SVM.
To see this, we rewrite (6) as

w(t+1)
m = argminwC Σ

i∈Nm

max(1− liw>zi, 0)2 +
ρ

2
‖w − v(t)

m ‖22,
(8)

where vector v(t)
m = c(t) − um with u(t)

m = λ
(t)
m /ρ.

[24] modified the method of [10] to solve (8), which is a
dual coordinate descent method. The dual form of objective
(8) can be shown as

minimize
α

1

2ρ
α>Qα− b>α s.t.αi ≤ 0,∀i, (9)

where b = [1− l1(vtm)>z1, . . . , 1− lNm
(vtm)>zNm

], Q = Q+
D, Qij = liljz

>
j zj , and D is a diagonal matrix Dii = ρ/(2C).

We can connect the primal form and dual form by 1

w(t)
m =

Nm

Σ
i=1

1

ρ
liα

(t)
i zi + v(t)

m . (10)

1In the paper of Zhang et al. [24], it did not include the 1/ρ term, it may
be a typo, as shown in the appendix.

This is achieved as follows. First, we rewrite (8) as

w(t+1)
m = argminwC Σ

i∈Nm

ε2i +
ρ

2
‖w − v(t)

m ‖22

s.t li(w(t+1)
m )>zi ≥ 1− εi

εi ≥ 0,∀i.

(11)

The Lagrangian of the above is

Lρ =
ρ

2
‖w − v(t)

m ‖2 + CΣ
i
ε2i − Σ

i
αi(liw

>zi − 1 + εi). (12)

Since the dual form is maxαminwLρ, by setting the partial
derivative of Lρ with respect to w to 0, we have

ρ(w − v(t)
m ) = Σ

i
αi(lizi). (13)

After rearranging the above, we obtain

w(t)
m =

Nm

Σ
i=1

1

ρ
liα

(t)
i zi + v(t)

m , (14)

which is (10).

The dual problem is optimized by updating one variable
αi at a time, which has a closed-form,

α
(t+1)
i = max(α

(t)
i −G

(t)
i /Qii, 0), (15)

where G
(t)
i is the gradient of the dual objective over αi as

shown below.

G
(t)
i =

Nm

Σ
n=1

α(t)
n Qin − bi. (16)

The computation of G(t)
i requires the summation of all the

data, which is O(Nm). We can rewrite G
(t)
i by using (10)

to reduce the computation complexity O(s), where s is the
average number of non-zero features in the data. That is, we
can express G(t)

i as

G
(t)
i = ρliw

(t)>

m zi − 1 +Diiα
(t)
i , (17)

where w
(t)>

m zi is O(s). The above trick is useful when the
feature is sparse.

After updating ai, we can update w(t+1)
m as

w(t+1)
m = w(t)

m +
1

ρ
(α

(t+1)
i − α(t)

i )lizi. (18)

III. A SAMPLING APPROACH FOR FAST ADMM ON
PRIMAL OBJECTIVE (1)

From the previous section, we know that ADMM requires
solving (8) at every iteration of ADMM. Each iteration can
take many inner iterations to complete. When local data
becomes large, it would take a substantial amount of time
to train a model. To deal with this drawback, we propose a
method that reduces the training cost. At the earlier iterations,
each local machine only uses a subset of its data instead of
all the data to update its learned model. As the algorithm
continues, each machine gradually increases the amount of
data used and finally reaches the full capacity. This method
enjoys similar fast decrease of objective value as SGD does at
the first few iterations and shares the same convergence rate



in the long term as using the full dataset every iteration. Thus,
for each iteration, each machine solves (19) instead of (8)

w(t+1)
m = argminwC Σ

i∈Nk
m

max(1− liw>zi, 0)2+

ρ

2
‖w − v(t)

m ‖22,∀m,
(19)

where we have replaced Nm with N (t)
m , which represents the

amount of data used on machine m at the kth iteration.

The amount of data used at the k + 1 iteration, N (t+1)
m ,

satisfies

|N (t+1)
m | = max{|N (t)

m | × β, |Nm|}, (20)

where β > 1 is the increase rate. Note that Nm stands for
total number of samples on machine m. For example, we can
initialize N1

m to 0.5|Nm|, and set β to 1.1, meaning the amount
of data used for training at each iteration in ADMM increases
by 10 percents each iteration.

The optimization procedure of the modified algorithm is
not very different from the traditional one; it iterates over (3)-
(5), except that the sub-problem (3) or (8) is replaced by (19),
which can be solved in a similar manner as described in the
previous section.

Now we analyze the convergence rate in terms of iterations
of the proposed method. For brevity, we rewrite the objective
to a general form as

minimize
w,c

f(w) + g(c)

s.t. Aw +Bc = k.
(21)

Then, the augmented Lagrangian is

Lρ(w, c, λ) = f(w) + g(c) + λ>(Aw +Bc− k)

+
ρ

2
‖Aw +Bc− k‖22.

(22)

For the distributed data setting, f(w) =
g

Σ
m=1

Σ
i∈Nm

C max(1−
liw
>zi, 0)2 and g(c) = 1

2‖c‖
2
2 in (22). Since our algorithm

uses a subset of data to update w for each iteration, the partial
optimality equation of Lρ(w, c, λ) with respect to w would not
be zero if measured by using full data. We assume there is an
error term e(t). We have the following theorem

Theorem 1 Let wT = 1
T ΣTt=1w

(t), cT = 1
T ΣTt=1c

(t). For
any x∗, c∗ satisfying Ax∗ +Bc∗ = k, we have
f(wT ) + g(cT )− f(w∗)− g(c∗)

≤ ρ

2T
(‖Bc∗ −Bc(0)‖22 − ‖Bc∗ −Bc(T )‖22) +

1

2ρT
(‖λ(0)‖22−

‖λ(T )‖22) +
1

T
ΣT−1
t=0 ‖e(t)‖‖w(t+1) − w∗‖

(23)
If ΣT−1

t=0 ‖e(t)‖‖w(t+1) − w∗‖ is sublinear to T , the above
implies O( 1

T ) convergence rate just like the standard ADMM
[9]. Q.E.D

In the algorithm, after the first few iterations, each machine
begins to use all of its data to update its model. It is reasonable
to assume that ‖e(t)‖ go towards zero as the algorithm begins
using all data. Moreover, ‖w(t+1)−w∗‖ is also sublinear with
respect to T due to the fact that the objective is strongly
convex. Thus, ΣT−1

k=0 ‖e(t)‖‖w(t+1)−w∗‖ is bounded and with
high probability it could be sublinear with respect to T .

IV. A SAMPLING APPROACH FOR FAST ADMM ON DUAL
OBJECTIVE OF (1)

We propose another method that still follows the similar
idea of sampling a subset of data on each round of commu-
nication. This section begins by converting the primal form
(1) to dual form. In order to make the dual form compact, we
relax the constraint and approximate it. As each dual variable
corresponds to a sample, sampling a subset to update the model
becomes easier and natural. We then show how to integrate the
sampling idea in performing ADMM on the dual of (1). We
will show that solving the dual of (1) by ADMM turns out to
be equivalent to SDCA-ADMM. We then propose techniques
to efficiently perform SDCA-ADMM for distributed data.

A. Converting primal (1) to approximated dual form

To achieve the goal, we transform each feature vector from
Rp to Rpg . That is, the dimensions of augmented feature space
is p × g, which is g times larger than the original feature
dimension p. Let us denote the original feature vector of the
ith sample on the m machine as z̃i,m ∈ Rp, the transformation
Rp → Rpg is:

zi,m((m− 1)p+ 1 : mp) =z̃i,m,

if i sample on the m machine,
(24)

the other entries in zi,m are set to zeros. Thus, the data matrix
Z ∈ Rpg×N becomes

Z = [Z1, Z2, . . . , Zm, . . . , Zg], (25)

where Zm ∈ Rpg×nm is a data matrix on machine m
that consists of augmented feature zi,m on each column,
and there are nm samples on machine m. Moreover, we
have Σgm=1nm = N , which is the number of all the data
samples. By the representation of (24) and (25), Z is a
block diagonal matrix. Let us denote the diagonal blocks as
Z(m),m ∈ {1, . . . , g}. Note that Z(m) is the submatrix of Zm
that consists of original features z̃i,m.

We now turn to specify a matrix B ∈ Rpg×g that encodes
the constraint in objective (1), which is w(1) = w(2) = · · · =
w(g). Since the feature dimensions becomes p×g dimensions,
so does the corresponding classifier w. Denote the subvector
w(m) ∈ Rp the mth block of w ∈ Rpg . Due to the augmented
features we design, we can view w(m) as a model learned by
the mth local machine. We then specify the transform B to be

B ∈ Rpg×g =


1p −1p
−1p 1p

−1p 1p
. . . . . . . . . . . .

−1p 1p

 (26)

where 1p means the p dimensional vector of all 1′s. Thus,
B>w is equal to the constraint w(1) = w(2) = · · · = w(g)

that encourages the model associated with each machine to
agree with each other. To make the dual form more compact
and simplified, we relax the constraint and propose to use a
regularization term Ψ so that Ψ(B>w) can have the similar
effect of the constraint. We choose Ψ(·) to be a squared of l2
norm, which is 1

2C
′‖ · ‖22 with C ′ controls the regularization



effect. Thus, Ψ(B>w) would be

1

2
C ′{

g∑
m=1

‖(w(m) − w(m+1))‖22}, (27)

where we use the notation that w(g+1) ≡ w(1). The regulariza-
tion penalizes the difference of a machine with its neighbors
(in terms of the index m) and encourages the subvectors w(m)

of w to agree with each other. Note that the specification
of the transform B is flexible. If we have a prior about the
relation between the models, we can easily encode it in the
transform. For example, if we believe that data behave slightly
heterogeneous (i.e. dataset bias [19]) on some machines,
we can allow a difference on the models learned by those
machines. As ADMM enjoys the benefits of solving structured
regularization, it then becomes its advantage as compared to
distributed SDCA [22], because SDCA has closed form update
only when the objective function and regularization is simple
enough (e.g. some common loss with l1 or l2 norm) [15], [16].
It may be hard for SDCA to encode structure regularization
without sacrificing the benefit of closed form updates.

To summarize, the conversion to the approximated dual
form is

minimize
w∈Rpg

1

N

g∑
m=1

nm∑
i=1

fi,m(z>i,mw) + ψ(B>w) =

− minimize
x∈RN ,y∈Rg

g∑
m=1

nm∑
i=1

f∗i,m(z>i,mw) + ψ∗(
y

n
)

s.t. Zx+By = 0,

(28)

where N = Σmnm and the definitions of zi,m, Z, B, ψ(B>w)
are in (24), (25), (26), and (27) respectively. Here fi,m = f is
the loss function associated to the sample i on machine m, and
the symbol ∗ is used to represent the corresponding conjugate
function.

B. SDCA-ADMM

We would like to point out that objective (28) can be solved
by SDCA-ADMM [18]. SDCA-ADMM [18] was originally
proposed to solve the regularized risk minimization.

minimize
w∈Rp

1

n

n∑
i=1

fi(z
>
i w) + ψ̃(w), (29)

where fi is the loss associated with the ith sample, and ψ̃
is a complex regularization the work intended to deal with.
(There are also some related works proposing stochastic/online
ADMM for complex regularization, see [2], [14], [17], [20],
[26].) The proximal operation for ψ̃ may not be easy to be
derived, yet in many cases, ψ̃ can be rewritten as ψ̃(w) =
ψ(B>w) where B ∈ Rp×g is a linear transform and the
proximal operation for ψ would be easy to be computed now.

The work [18] then transforms the objective (29) into dual
form.

minimize
w∈Rp

1

n

n∑
i=1

fi(z
>
i w) + ψ(B>w)

= −minimize
x∈Rn,y∈Rg

n∑
i=1

f∗i (z>i w) + ψ∗(
y

n
) s.t. Zx+By = 0,

(30)

where f∗i and ψ∗ are the conjugates of fi and ψ respectively,
and Z = [z1, z2, . . . , zn] ∈ Rp×n is a data matrix with each
column representing a sample. The optimal solution w∗, x∗,
and y∗ satisfy the following condition.

z>i w
∗ ∈ ∇f∗i (x∗i ),

1

n
y∗ ∈ ∇ψ(u)|u=B>w∗ ,

Zx∗ +By∗ = 0.
(31)

Note that the dual problem (30) is a composite optimization
with a linear constraint Zx+By = 0.

Suppose the data are split into B batches: (I1, I2, . . . , IB)
and Ib is the index of a subset of {1, . . . , n} that represents the
bth batch of samples. At each iteration of SDCA-ADMM, one
mini-batch, denoted it as I = Ib, is chosen uniformly at ran-
dom. The update rules at the tth iteration of the optimization
are

y(t) = argmin
y

nΨ∗(
y

n
)− 〈w(t−1), Zx(t−1) +By〉

+
ρ

2
‖Zx(t−1) +By‖2 +

1

2
‖y − y(t−1)‖2Q

x
(t)
I = argmin

xI

∑
i∈I

f∗i (xi)− 〈w(t−1), ZIxI +By(t)〉

+
ρ

2
‖ZIxI + Z\Ix

(t−1)
\I +By(t)‖2 +

1

2
‖xI − x(t−1)

I ‖2GI

w(t) = w(t−1) − γρ{n(Zx(t) +By(t))− (n− n/K)(Zx(t−1)

+By(t−1))},
(32)

where xI ∈ R|I| is the dual variable corresponds to the
samples batch I , y(t) is the dual variable associated with the
regularization term and w(t) is the primal variable at the t
iteration, and γ, ρ are the parameters of the algorithm. We
have used the notation that ‖x‖Ω

.
=
√
x>ΩX , where Ω is a

positive semidefinite matrix. Simply neglecting the last term
in the updates for y(t) and x

(t)
I , we can view the updates as

performing standard ADMM on the dual space, where the dual
variables of y(t) and x(t)

I are now the primal variable w(t).

The positive semidefinite matrices Q and GI in the
weighted norms need to be specified. Suitable choices of the
matrices can simplify the updates, making the updates have
closed form. Suzuki [18] set Q as Q = ρ(ηBIg − B>B),
where ηB is chosen to satisfy

ηBIg � B>B (33)

And GI is set to be GI = ρ(ηZ,II|I| −Z>I ZI), where ηZ,I is
chosen so that

ηZ,II|I| � Z>I ZI . (34)

As a result, the update of y(t) can be simplified as

y(t) = prox(q(t)|nψ
∗(·/n)

ρηB
), (35)

where

q(t) = y(t−1) +
B>

ρηB
[w(t−1) − ρ(Zx(t−1) +By(t−1))], (36)

and the prox means the proximal operation

prox(θ|Ψ)
.
= argmin

u

1

2
‖θ − u‖2 + Ψ(u). (37)



The update (38) can also be written as

y(t) = q(t) − prox(q(t)|nψ∗(ρηB ·)/(ρηB)) (38)

By specifying GI as in (34), updating x(t)
I can be simplified

to
x

(t)
I = prox(r

(t)
I |{

∑
i∈I

f∗i /(ρηZ,I)}), (39)

where

r
(t)
I = x

(t−1)
I +

Z>I
ρηZ,I

[w(t−1) − ρ(Zx(t−1) +By(t))]. (40)

The update rule (39) can be decomposed into several proximal
operation with respect to single variable xi, i ∈ I . That is, we
can compute each element of x(t)

I by

x
(t)
i ← prox(r

(t)
i |

f∗i
ρηZ,I

), for each i ∈ I (41)

where r(t)
i is the ith element of r(t)

I . Thus, updating x(t)
I can

be done by parallelly computing each xi.

The techniques of choosing suitable positive semidefinite
matrix in the weighted norms is called linearization of ADMM
[14], [17]. By linearization, we can simplify the update rules
and the updates may allow to be written in closed form.

C. Efficient implementation of distributed SDCA-ADMM

The naive distributed implementation of SDCA-ADMM
for solving the approximated dual form of objective (1),
which is (28), would operate on the high dimensional feature
space Rpg with frequent communication between machines
and large memory consumption because of feature augmenting.
Yet, by exploiting the block-diagonal structure of data matrix
Z, (24) and (25), the algorithm can be conducted on the
original feature space Rp while unnecessary communication
and computation can be avoided.

Let us take the update rule for variables x as an example,
described in (39) and (40). At iteration t, each machine m
uniformly and randomly chooses a mini-batch, say Im, and
updates the new values of dual variables associated with Im.
Thus, the dual variables that are going to be updated at the iter-
ation is fully indexed by I = {I1, . . . , Im, . . . , Ig}, with |I| =
g∑

m=1
|Im|. Now, consider the computations Z>I

ρηZ,I
[w(t−1) −

ρ(Zx(t−1) + By(t))] in (40). Let us focus on Z>I w
(t−1)

first. At first glance, the multiplication of ZI ∈ Rpg×|I|
and w(t−1) ∈ Rpg suffers from the high dimensions of pg.
Fortunately, if we exploit the block diagonal structure of Z,
the multiplication can be decomposed into several smaller
matrix-vector multiplications: Z>(m),Im

w
(t−1)
(m) on each machine

m, where Z(m),Im ∈ Rp×|Im| represents the columns of the
submatrix Z(m) indexed by the mini-batch Im on machine
m. Consequently, each machine m only need to compute its
Z>(m),Im

w
(t−1)
(m) on its local data. Moreover, it does not require

the multiplication results associated with other machines since
the update of subvector of r(t)

I that corresponds to the Im batch
only depends on Z>(m),Im

w
(t−1)
(m) . This suggests that we do not

really need to transform the features into the augmented high
dimensional feature space and, as a consequence, it avoids

Fig. 1. Illustration on how to compute ZoI pw. This is g = 3 cases (i.e.
data are distributed on three machines). Suppose I1, I2, and I3 batches are
chosen at current iteration, so I = {I1, I2, I3}. Since matrix Z is a block
diagonal matrix and all the off-diagonal blocks are zeros (which are filled
with the slash lines on the graph), the computations can be decomposed
into smaller components Zo

(1),I1
pw(1), Zo

(2),I2
pw(2), and Zo

(3),I3
pw(3),

each is independently computed on the respective local machine. Thus, the
unnecessary computation and communication can be avoided.

Algorithm 1 Distributed SDCA-ADMM
Input: parameters ρ, γ, ηZ,I , ηB
Initialize x0 = 0, y0 = 0, w0 = 0
for t = 1 to T do

1. The master receives c(t−1)
(m) and update y(t).

q(t) = y(t−1) +
∑
c
(t−1)
(m)

y(t) = q(t) − prox(q(t)|nΨ(ρηB · )/(ρηB))
2. The master broadcasts y(t).
3. Each local machine m randomly chooses a mini-
batch Im, so totally

g∑
m=1
|Im| of the dual variables x

are updated at the k iteration.
4. Each local machine updates xi,m, i ∈ Im.
x

(t)
i,m ← prox(r

(t)
i,m|

f∗i,m
ρηZ,I

) for each i ∈ Im, where

r
(t)
i,m is the ith element of r

(t)
Im

, and r
(t)
Im

= x
(t−1)
Im

+

(Z>(m),Im
/(ρηZ,I))×{w(t−1)

(m) −ρ(Z(m)x
(t−1)
(m) +B(m)y

(t))}
5. Each local machine updates w(t)

(m)

w
(t)
(m) = w

(t−1)
(m) − γρ{n(Z(m)x

(t)
(m) + B(m)y

(t)) − (n −
n/K)(Z(m)x

(t−1)
(m) +B(m)y

(t−1))}
and then computes c(t)(m) and send it to the master.

c
(t)
(m) =

B>(m)

ρηB
{w(t)

(m) − ρ(Z(m)x
(t)
(m) +B(m)y

(t))}

end for
Output: 1

g

∑
m w

(T )
(m).

the unnecessary communication, computation, and memory
consumption. Figure 1 depicts the decomposition.

Similarly, now let us consider Zx(t−1). It can be de-
composed into Z(m)x

(t−1)
(m) , where x(t−1)

(m) represents the dual
variables associated with the data on machine m at the



t − 1 iteration. Thus, each machine can simply maintains its
Z(m)x

(t−1)
(m) independently and thus does not require those of

other machines. However, maintaining Z(m)x
(t−1)
(m) seems to

required O(nm) complexity, which is burdensome when facing
large amount of data. A remedy is to incrementally update
Z(m)x

(t)
(m) as Z(m)x

(t)
(m) = Z(m)x

(t−1)
(m) + z̃i,m(x

(t)
i,m − x

(t−1)
i,m )

for each sample i in the mini-batch Im. As a result, the update
can be computed much quicker since the complexity is reduced
from O(nm) to O(|Im|) and |Im| � nm.

Now let us turn to the last component By(t) in (40).
Denote B(m) as the mth block of p rows. For example, B(1)

would be the first p rows of B, which corresponds to the
constraint between w(1) and w(m). Because of the design of
B in (26) (i.e. blocks of 1’s), the value of the elements in
B(m)y is identical. Thus, only one element in B(m)y needs to
be computed.

For the update of primal w, we have

w
(t)
(m) =w

(t−1)
(m) − γρ{n(Z(m)x

(t)
(m) +B(m)y

(t))−

(n− n/K)(Z(m)x
(t−1)
(m) +B(m)y

(t−1))}.
(42)

The overall implementation is shown in Algorithm 1, which
iterates between updating dual variables y, x, and primal
variables w. The variables are initialized as zero vectors. For
updating y, which are shown in (35) and (36), the component
B>

ρηB
[w(t−1)− ρ(Zx(t−1) +By(t−1))] can be decomposed into

the summation of smaller components c(t)(m) =
B>(m)

ρηB
{w(t)

(m) −
ρ(Z(m)x

(t)
(m)+B(m)y

(t)). Thus, each machine locally computes

c
(t)
(m) and the master aggregates the results to update y. Each

machine then chooses a batch of dual variables XIm (for each
m) to update. After that, it updates w(t)

(m) and finally computes

c
(t)
(m) and send it to the master. We use the average w(T )

(m) as
the final solution.

D. Theoretical Analysis

SDCA-ADMM can be shown to converges R-linearly [18].
The convergence rate depends on spectral norm of data. If the
correlation between samples are small, the number of iterations
can be reduced so that it can converge faster as the size of
batch increases until some point (despite the serial running
time increases with the batch size). Otherwise, the convergence
rate may not be improved by increasing the batch size. This
nature also appears in mini-batch SDCA, as shown by the
studies of [13], [15], and [22].

V. RELATED WORKS

There are growing interests in distributed data setting.
Zinkevich et al. [23] and Zhang et al. [27] consider running the
optimization independently for each machine and combining
the learned models at the final stage. Duchi et al. [7] and
Xio [21] propose methods based on dual subgradient aver-
aging [21], and provide sharp bounds on their convergence
rates under several network topologies. Very recently, there
are works that integrate the second order information for
distributed optimization. Agarwal et al. [1] consider distributed

TABLE I. DATASET STATISTICS

Data number of samples dimension
delta 500,000 500
gamma 500,000 500
mnist47 1,634,445 784
ocr 3,500,000 1,156
epsilon 500,000 2,000
rcv1 697,641 47,236

implementation of L-BFGS [12]. Among all the distributed
optimization methods, perhaps the most well-recognized is
ADMM In addition to solve the distributed data scenario we
consider, it can achieve variable splitting for more complex
composite objectives. Because of the pupularity and the widely
usage of ADMM, we tend to improve the method, which is
the goal of this paper.

Perhaps the most closely related work with our first pro-
posed method are [4] and [8]. They combine the advantages of
stochastic gradient descent and gradient descent, though not in
distributed setting. The advantage of SGD lies in its cheaper
computational cost since only one sample is chosen at a time
to compute the gradient for each iteration, while still able to
achieve the fast decrease of objective value. However, due to
the noisy gradient it computes, SGD is eventually dominated
by gradient descent. Thus, the algorithm behaves like SGD at
the beginning and move towards gradient descent eventually.
Our work differs from theirs in that we consider the distributed
data setting solved by ADMM. Each machine first uses a
subset of data like stochastic variants of ADMM but eventually
uses all data as standard ADMM does.

VI. EXPERIMENTS

We compare our methods with standard ADMM [24] and
distributed SDCA [22] on several datasets. We denote our
first method which performs ADMM on primal objective (1)
with sampling as ADMM-P, and we denote the second method
which performs distributed SDCA-ADMM on dual objective
(28) as ADMM-D. The datasets are for binary classification.
2 Table 1 shows their statistics. For delta, gamma, and ocr,
because only the labels of original training data are available,
we split each of them by 80% as training set and the remain
20% as testing set. For mnist, we choose classifying digit
4 against digit 7 as the recognition goal and also split the
data into 80/20 split. For epsilon, we use the pre-defined
training/testing split. For rcv1, the ratio of original training to
testing data size is much smaller, so we re-split the data into
80/20 split. The data are further distributed on four machines
in our workstation. The batch size |I| is set to 100 (i.e each
of four machines uses 25 samples at a time) for both SDCA
and ADMM-D on all the datasets except rcv1 where the batch
size |I| is set to 1000.

In our distributed SDCA-ADMM, we use the smoothed
hinge loss

fi(z
>
i w) =

 0 (yiz
>
i w ≥ 1)

1
2 − yiz

>
i w (yiz

>
i w < 0)

1
2 (1− yiz>i w)2 (otherwise)

(43)

2delta, gamma, and ocr are available on http://largescale.ml.tu-
berlin.de/about, while mnist, epsilon, and rcv1 are available on the
LIBSVM webpage.



(a) delta (b) gamma

(c) mnist47 (d) ocr

(e) epsilon (f) rcv1

Fig. 2. Training accuracy vs. time for each method on different datasets.



(a) delta (b) gamma

(c) mnist47 (d) ocr

(e) epsilon (f) rcv1

Fig. 3. Testing accuracy vs. time for each method on different datasets.



The proximal operation with respect to its dual form has a
closed form solution, which is involved in the update of dual
variables x (see (41)),

prox(u|f∗i /θ) =


θu−yi
1+θ (−1 ≤ θuyi−1

1+θ ≤ 0)

−yi (−1 > θuyi−1
1+θ )

0 (otherwise)

(44)

As mentioned previously, we let regularization Ψ(·) as 1
2C‖ ·

‖22. Thus, the update of dual variables y (38) would be

y(t) =
q(t)

1 + 1
Cnρηb

. (45)

There are some parameters needed to be specified in ADMM-
D: ρ, γ, ηZ,I , and ηB , where ηZ,I and ηB should be chosen so
that (33) and (34) are satisfied. For γ, we set it as γ = 1/n. For
ηB , due to the choice of transform B, simple calculation would
show that it should be at least gp (i.e. the value no less than the
multiplication of number of machines g and feature dimensions
p). For ηZ,I , it should be larger than the largest eigenvalue of
Z>I ZI associated with the mini-batch I . Note that it is time
consuming to compute it for each mini-batch at the augmented
feature space. Instead, before running the optimization, we
simply sample a mini-batch, say I , and calculate the largest
eigenvalue of Z>I ZI at the original feature space. Denote the
computed value as ηtmp. We set every ηZ,I to the same value:
ηZ,I = θ, where θ = 5× 10d with the smallest power d such
that θ > ηtmp. For ρ, it is set to 10d

′
with d′ chosen to satisfy

ρ × ηZ,I = 5. We found the above heuristic work well in
practice. The parameters for standard distributed ADMM is
set to the default setting as in [24], while for the ADMM-
P, we set the additional parameter k to 1.5, which means that
samples used is increased by 1.5 times at subsequent iterations

Since the objective of each method is not the same (i.e.
for ADMM-D, the objective is shown on (28); for standard
ADMM and ADMM-P, the objective is shown on (1); for
parallel-SDCA, the objective is hinge loss with l2 regulariza-
tion without any constraint as compared to the others.), we
tune the regularization parameter C such that each method
can achieve to the best accuracy on each dataset. We report
the results on Figure 2 and 3. Figure 2 shows the training
accuracy vs. training time, while Figure 3 shows the testing
accuracy vs. training time. Each curve represents a different
method. For ADMM or ADMM-P, each point on a curve is
the classification result of a model at a corresponding iteration,
while for distributed SDCA or ADMM-D, each point is a
multiple of iterations that is roughly equivalent to a full pass
of data. We run the distributed SDCA and ADMM-D ten times
for each dataset so the results are the averaged ones.

From the figures, we see that ADMM-D converges the
fastest on most of the datasets except rcv1 among the methods.
The figure also shows that ADMM-D and distributed SDCA
outperform standard ADMM and ADMM-P on most of the
cases, while ADMM-D is better than distributed SDCA on
gamma and epsilon. On other data, ADMM-D is comparable or
slightly better than distributed SDCA. We note that though the
improvements are not large on some datasets, as our algorithms
belong to primal-dual optimization that update on both primal
and dual variables in each iteration, it is easy to compute
duality gap to measure the progress during iterations, while

SDCA may not be easy to achieve that. This indicates that
ADMM-D (distributed SDCA-ADMM) can enjoy the merits
of SDCA and ADMM and outperform them as a consequence.
The figure also shows ADMM-P is at least comparable to
standard ADMM. ADMM-P outperforms ADMM on delta,
gamma and mnist47. On rcv1, standard ADMM seems to be
better than ADMM-D and distributed SDCA. Note that the
feature dimensions of rcv1 data is much larger than the other
datasets. As the dimensions increases, computations such as
matrix-vector product also scales with the dimensions. For
standard ADMM [24], the algorithm follows a strategy used in
LIBSVM [6] to update w(m), where it maintains and updates
a active set [10] such that the dual variables associated with
samples outside the active set do not need to be updated
anymore. This means that the computational time is decreased
through iterations of standard ADMM, which alleviates the
suffer of high dimension. While in SDCA or ADMM-D, at
each iteration, it still samples a pre-determined batch size of
data. Thus, an interesting future work would be to exploit
the active set strategy into distributed SDCA and ADMM-D.
To summarize, ADMM-D is an effective method on medium
feature size data. If frequent communication is admissible (as
in our setup), we suggest to use ADMM-D, otherwise use
ADMM-P.

VII. CONCLUSION

We propose sampling-based ADMM approaches for learn-
ing from distributed data. We integrate the idea from stochastic
gradient descent into ADMM. Our first method uses subset of
data on early rounds of communication, which can reduce the
cost on early stage while enjoy the similar convergence rate
as the standard one. We also transform the primal objective
into the approximated dual form and propose a distributed
variant of the recently proposed SDCA-ADMM to solve it. The
approximated dual form can be viewed as performing group
regularization on the augmented feature space. As described,
the algorithm does not necessarily have to be conducted on
the augmented feature space. Due to the diagonal structure
of expanded data matrix and the transform we specified, the
matrix-vector or matrix-matrix product that involved in the
updates can be decomposed into smaller components, which
consequently allows the operations computed on original
feature space and avoids the unnecessary computations and
memory consumption. Future works include the variant of the
proposed methods that deal with asynchronous issue like [25].
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APPENDIX
Here, we give a complete proof for the theorem. It basically follows the
standard analysis of ADMM as [20] except the additional deviation term
e(t).

Proof: By the partial optimality of Lρ(w, z, λ) with respect to w,
we have

∂f(w(t+1)) + e(t) +A>(λ(t) + ρ(Aw(t+1) +Bz(t) − c)) = 0.
(46)

Using the update rule

λ(t+1) = λ(t) + ρ(Aw(t+1) +Bz(t+1) − c), (47)

yields

∂f(w(t+1)) + e(t) +A>(λ(t+1) + ρ(Bz(t) −Bz(t+1))) = 0.
(48)

Similarly, for z, we have

∂g(z(t+1)) +B>(λ(t) + ρ(Aw(t+1) +Bz(t+1) − c)) = 0. (49)

Using the update rule (47) yields

∂g(z(t+1)) +B>λ(t+1) = 0. (50)

By the convexity of f,

f(w(t+1))− f(w∗) ≤ −〈e(t) +A>(λ(t+1) + ρ(Bz(t) −Bz(t+1)))

, w(t+1) − w∗〉 = −〈λ(t+1) + ρ(Bz(t) −Bz(t+1)), Aw(t+1) −Aw∗〉
− 〈e(t), w(t+1) − w∗〉
= −〈λ(t+1), Aw(t+1) +Bz∗ − c〉+ ρ〈(Bz(t+1) −Bz(t)), Aw(t+1)

+Bz∗ − c〉 − 〈e(t), w(t+1) − w∗〉

= −〈λ(t+1), Aw(t+1) +Bz∗ − c〉+
ρ

2
(‖Bz∗ −Bz(t)‖22 − ‖Bz∗

−Bz(t+1)‖22 + ‖Aw(t+1) +Bz(t+1) − c‖22 − ‖Aw(t+1) +Bz(t)−
c‖22)− 〈e(t), w(t+1) − w∗〉.

(51)
Similarly, by the convexity of g(z),

g(z(t+1))− g(z∗) ≤ −〈B>λ(t+1), z(t+1) − z∗〉. (52)

Add (51) and (52), we have

f(w(t+1)) + g(z(t+1))− f(w∗)− g(z∗) ≤

− 〈λ(t+1), Aw(t+1) +Bz(t+1) − c〉 − 〈e(t), w(t+1) − w∗〉+
ρ

2
(‖B

z∗ −Bz(t)‖22 − ‖Bz∗ −Bz(t+1)‖22 + ‖Aw(t+1) +Bz(t+1) − c‖22−
‖Aw(t+1) +Bz(t) − c‖22)

= −〈e(t), w(t+1) − w∗〉+
ρ

2
(‖Bz∗ −Bz(t)‖22 − ‖Bz∗ −Bz(t+1)

‖22 − ‖Aw(t+1) +Bz(t) − c‖22) +
1

2ρ
(‖λ(t)‖22 − ‖λ(t+1)‖22)

≤ −〈e(t), w(t+1) − w∗〉+
ρ

2
(‖Bz∗ −Bz(t)‖22 − ‖Bz∗ −Bz(t+1)

‖22) +
1

2ρ
(‖λ(t)‖22 − ‖λ(t+1)‖22).

(53)
Summing the above inequality from t = 0 to T − 1, we have

ΣT−1
t=0 f(w(t+1)) + g(z(t+1))− f(w∗)− g(z∗)

≤
ρ

2
(‖Bz∗ −Bz(0)‖22 − ‖Bz∗ −Bz(T )‖22) +

1

2ρ
(‖λ(0)‖22−

‖λ(T )‖22)− ΣT−1
t=0 〈e

(t), w(t+1) − w∗〉

≤
ρ

2
(‖Bz∗ −Bz(0)‖22 − ‖Bz∗ −Bz(T )‖22) +

1

2ρ
(‖λ0‖22−

‖λT ‖22) + ΣT−1
t=0 ‖e

(t)‖‖w(t+1) − w∗‖.
(54)

Using Jensen’s inequality yields

f(wT ) + g(zT )− f(w∗)− g(z∗)

≤
ρ

2T
(‖Bz∗ −Bz(0)‖22 − ‖Bz∗ −Bz(T )‖22)+

1

2ρT
(‖λ(0)‖22 − ‖λ(T )‖22) +

1

T
ΣT−1
t=0 ‖e

(t)‖‖w(t+1) − w∗‖.

(55)


