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Lecture 9: Duality Theory, Part I

1 Review

We begin by reviewing some results from last lecture.

Lemma 1. Let F (x) = Ez[f(x; z)] : Rd → R be a convex function. Consider the
update

xk+1 = xk − ηgk,

where Ez[gk] = ∇F (xk). Suppose x∗ = argminF (x) exists and the initial distance is
bounded, i.e., ∥x1 − x∗∥ ≤ D. Then,
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Remark: The variance is a critical factor in the progress of SGD.

Theorem 1. Suppose each fi(·) is a L-smooth and µ strongly convex. Setting η = 1
8L

and K = 64L
µ
. Then, at each stage s, given vs,
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)
where x∗ ∈ argminx F (x)

Remark: The optimality gap at each stage decays with a constant factor as shown in
Theorem 1.

The condition for SVRG to be faster than GD is when
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This holds if the function is smooth, strongly convex, and the problem is finite-sum.
It can also be shown that SVRG is faster than SGD for smooth, convex, finite-sum
problems.

Remark: SVRG is not applicable if we get the data in a stream fashion. In fact, in
this case, we would not know all the samples and thus would not have access to the
full gradient. In this case, SGD is better.

2 Lagrangian, Dual Problem, and Duality

2.1 Motivation

In practice, the optimal solution is unknown and we need a way to verify the solution
obtained after solving the optimization problem is indeed optimal. For that, we derive
an upper bound for the optimality gap. Let f(·) : C → R and C ⊆ Rd where the
optimality gap is denoted by δk := f(xk)− infx∈C f(x).

An upper bound for the optimality gap provides a lower bound for the optimal
value. The estimated lower bound, denoted by y∗, is characterized by y∗ ≤ infx∈Cf(x).

2.2 Optimization with functional constraints

The constrained optimization problem consisting of m inequality constraints and p

equality constraints is shown below.

inf
x∈domf

f(x)

s.t. fj(x) ≤ 0, j = 1, . . . ,m

affine hi(x) = 0, i = 1, . . . , p

Note that the above problem is convex if f(·), fi(·) ,∀i ∈ [n] are convex and
hi(·) ,∀i are affine. Note that if hi(·) ,∀i are not affine, we might end up with a
non-convex feasible region. As a counterexample, consider a set that contains only a
single equality constraint, i.e. S0 = {x : x2 = 1}. The roots of x2 = 1 are 1,−1 ∈ S0

and clearly this set is non-convex, since 1
2
· (−1) + 1

2
c · 1 = 0 /∈ S0.

Recall that:

• Linear Function : hi(x) = a⊤i x

• Affine function : hi(x) = a⊤i x+ d, where d ∈ R
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Note that both linear and affine functions are convex. Additionally, a set S such that
S = {x : a⊤x = c} defines a hyperplane.

We can formulate the domain of the function to be a constraint using the indicator
function denoted by I(·). The indicator function is defined as follows

I(x ∈ domf) =

0 if x ∈ domf

∞ if x /∈ domf.

The optimization problem can be equivalently formulated as

inf
x∈Rd

f(x)

s.t.fj(x) ≤ 0, j = 1, . . . ,m

affine hi(x) = 0, i = 1, . . . , p

I(x ∈ domf) ≤ 0

Observe that in this case the infimum is taken over the whole Rn. If the original
problem is convex, then adding the indicator function constraint does not change the
convex nature of the problem because the indicator function is convex. Also, note
that the minimum value is unchanged between the above two problems because the
feasible solutions to the above program will always be in domf .

We will next present the method of Lagrange multipliers for solving constrained
optimization problems of the above form.

Definition 1. (Lagrangian)

L(x, λ, µ) := f(x) +
m∑
j=1

λjfj(x) +

p∑
i=1

µihi(x), (1)

where λj ≥ 0, ∀ j ∈ [m] and µi ∈ R, ∀ i ∈ [p]. λj and µi are called the Lagrangian
multipliers.

Remark: x is called the primal variable and µ and λ are called the dual variables.

Property 1 of the Lagrangian:
Let Ω := {x ∈ Rd : fj(x) ≤ 0,∀j ∈ [m];hi(x) = 0,∀i ∈ [p]}. Consider x ∈ Ω. Then
the Lagrangian lower-bounds the function f(x), that is

L(x, λ, µ) ≤ f(x), (2)
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where λ =


λ1

λ2

...
λm

 and µ =


µ1

µ2

...
µp


Proof: By the definition of Lagrangian, we have

L(x, λ, µ) := f(x) +
m∑
j=1

λjfj(x) +

p∑
i=1

µihi(x).

If x ∈ Ω, then
∑m

j=1 λjfj(x) ≤ 0, because λj ≥ 0,∀j ∈ [m], and fj(x) ≤ 0 which re-
sults in individual λjfj(x) ≤ 0. If x ∈ Ω, we also have

∑p
i=1 µihi(x) = 0 since hi(x) = 0.

Question: For any x that satisfies the functional constraints, i.e., x ∈ Ω, when does
L(x, λ, µ) = f(x)?
Answer: When λ = 0, because in that case we have L(x, 0, µ) = f(x), ∀x ∈ Ω.

Property 2 of the Lagrangian:
Let Ω := {x ∈ Rd : fj(x) ≤ 0,∀j ∈ [m];hi(x) = 0,∀i ∈ [p]}. If x ∈ Ω, then

sup
λ≥0;µ

L(x, λ, µ) =

f(x) if x ∈ Ω

∞ otherwise
(3)

Proof: Property 2 follows from the definition of Lagrangian (1). If x ̸∈ Ω, ∃ j ∈
[m] or i ∈ [p] such that fj(x) > 0 or hi(x) ̸= 0, then we can choose appropriate
λj or µi such that L(x, λ, µ) = ∞. When x ∈ Ω, then L(x, λ, µ) is upper bounded by
f(x) from Property 1.

Remark : Based on Property 1 and Property 2, we have the following result:

inf
x∈Rd

sup
λ≥0;µ

L(x, λ, µ) = inf
x∈Ω

sup
λ≥0;µ

L(x, λ, µ) = inf
x∈Ω

f(x) (4)

3 Dual function

The dual function is defined as

g(λ, µ) := inf
x∈Rd

L(x, λ, µ) (5)

Note that for some λ, µ the Lagrangian may be unbounded from below in x. In that
case, the dual function g(λ, µ) takes on the value −∞.

Remark: Observe that the dual function g(λ, µ) only depends on dual variables.
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3.1 Weak and Strong Duality

Theorem 2. (Weak duality): The primal value infx∈Ω f(x) and the dual value
supλ≥0;µ g(λ, µ) are related as

sup
λ≥0;µ

g(λ, µ) ≤ inf
x∈Ω

f(x),

that is, the dual value is not greater than the primal value.

Proof. From the equality in (4), we have

inf
x∈Rd

sup
λ≥0;µ

L(x, λ, µ) = inf
x∈Ω

f(x) (6)

⇒ inf
x∈Rd

L(x, λ, µ) ≤ inf
x∈Ω

f(x). (7)

Notice that (7) is true for any λ ≥ 0, µ, therefore we have

inf
x∈Rd

L(x, λ, µ) ≤ inf
x∈Ω

f(x) (8)

⇔ g(λ, µ) ≤ inf
x∈Ω

f(x) (9)

⇔ sup
λ≥0;µ

g(λ, µ) ≤ inf
x∈Ω

f(x) (10)

This completes the proof for weak duality.

Definition 2. (Strong duality): When the primal value and dual value are equal,
we say strong duality is satisfied, that is

sup
λ≥0;µ

g(λ, µ) = inf
x∈Ω

f(x). (11)

In the next lecture, we will learn the sufficient condition for strong duality, and
how these conditions are necessary and sufficient when the optimization problem is
convex.

4 Example

Consider the following primal problem, which is an example of a generic linear
programming problem:

min
x∈Rd

⟨c, x⟩

s.t Ax ≥ b,
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where A ∈ Rm×d, and b ∈ Rm. The above problem can be rewritten as

min
x∈Rd

⟨c, x⟩

s.t b− Ax ≤ 0

Notice that the constraint Ax ≥ b implies m element-wise inequality constraints, and
therefore is equivalent to

b[i]− (Ax) [i] ≤ 0 , ∀i ∈ [m].

Let λ ∈ Rm
+ , where Rm

+ denotes the set of m-dimensional vectors with non-negative
elements.

Step 1: Get the Lagrangian:
The Lagrangian of the above problem is given as

L(x, λ) = ⟨c, x⟩+ ⟨λ, b− Ax⟩.

After grouping terms we get the following

L(x, λ) = ⟨c, x⟩+ ⟨λ,−Ax⟩+ ⟨λ, b⟩
= ⟨c, x⟩+ ⟨A⊤λ, x⟩+ ⟨λ, b⟩
= ⟨c− A⊤λ, x⟩+ ⟨λ, b⟩.

Step 2: Construct the dual function:
Next, we construct the dual function by minimizing the Lagrangian over the primal
variable x, i.e.

g(λ) = inf
x∈Rd

L(x, λ) = inf
x∈Rd

⟨c− A⊤λ, x⟩+ ⟨b, λ⟩.

Minimizing over the values of x we have the following

g(λ) = inf
x
L(x, λ) =

b⊤λ , if c = A⊤λ

−∞ , otherwise

Step 3: Get the dual problem:
The last step is to get the dual problem, i.e.

sup
λ≥0

g(λ)

s.t. c = A⊤λ
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Bibliographic notes

More information can be found in Chapter 5 of Convex Optimization by Stephen
Boyd and Lieven Vandenberghe [Boyd and Vandenberghe (2004)], and Chapter 5 of
Algorithms for Convex Optimization. Nisheeth K. Vishnoi.[Vishnoi (2021)].
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