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Lecture 8: SGD with Variance Reduction

1 Review of Lecture 7: Introduction to stochastic
optimization

We begin by reviewing the Stochastic Gradient Descent (SGD).

1.1 Stochastic Optimization
Consider minx∈Rd F (x), where F (x) := Ez[f(x; z)].

Algorithm: Stochastic Gradient Descent (SGD)

1: for k = 1, 2, . . . do
2: Compute a stochastic gradient gk that satisfies Ez[gk] = ∇F (xk)

3: xk+1 = xk − ηgk.
4: end for

1.2 SGD v.s. GD

Method
SGD GD

convex (and smooth) O
(

1√
k

)
O
(
1
k

)
strongly convex

O
(
1
k

)
O
(
exp(−k)

)
and smooth

Table 1: Convergence rates for different optimization scenarios. [Rakhlin (2012)]

1.3 Iteration complexity of SGD
Denote i1:K all the randomness from iteration 1 to K, i.e., i1, i2, . . . , iK .
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Theorem 1. Let F (x) = Ez[f(x; z)] : Rd → R be a convex function. Consider the
update

xk+1 = xk − ηgk,

where Ez[gk] = ∇F (xk). Suppose x∗ = argminF (x) exists and the initial distance is
bounded, i.e., ∥x1 − x∗∥2 ≤ D. Then,

1

K

K∑
k=1

Ei1:K

[
F (xk)− F (x∗)

]
≤ η

2K

 K∑
k=1

Ei1:K

[
∥gk∥22

]+
∥x1 − x∗∥22

2ηK
,

where x̄K := 1
K

∑K
k=1 xk.

Caution!!! To be rigorous, we need to identify conditions such that the stochastic
gradient norm is bounded.

Lemma 1. Eik

[
∥gk∥22

]
is an upper bound of the variance of the stochastic gradient.

Proof.

V ar(gk) ≜ Eik

[
(gk − Eik [gk])

2
](

since Eik [gk] = ∇F (xk)
)

= Eik

[
∥gk∥22

]
− 2Eik

[
⟨gk,Eik [gk]⟩

]
+ ∥∇F (xk)∥22

= Eik

[
∥gk∥22

]
− 2∥∇F (xk)∥22 + ∥∇F (xk)∥22

≤ Eik

[
∥gk∥22

]
.

1.4 SGD for non-convex problems
Theorem 2. Assume that the variance of the stochastic gradient ∇f(x; z) is at most
σ2 for all x, i.e., Ez

[
∥∇f(x; z)−∇F (x)∥22

]
≤ σ2. Suppose F (·) is L-smooth. Then,

SGD with the step size η ≤ 1
L

has

K∑
k=1

Ei1:K

[
∥∇F (xk)∥22

]
≤ 2(F (x1)− F∗)

η
+ ηLσ2K.

Proof. (Proof of the theorem) Starting from the smoothness, we have, given xk,

F (xk+1) ≤ F (xk) + ⟨∇F (xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 (1)

= F (xk)− η⟨∇F (xk), gk⟩+
η2L

2
∥gk∥2 (2)

2



Take expectation over the randomness from 1 to k on both sides, we have

Ei1:k [F (xk+1)] ≤ Ei1:k [F (xk)]− ηEi1:k [⟨∇F (xk), gk⟩] +
η2L

2
Ei1:k [∥gk∥2] (3)

= Ei1:k [F (xk)]− ηEi1:k−1
[∥∇F (xk)∥2] +

η2L

2
Ei1:k [∥gk∥2] (4)

≤ Ei1:k [F (xk)]− ηEi1:k−1
[∥∇F (xk)∥2] +

η2L

2

(
Ei1:k−1

[∥∇F (xk)∥2] + σ2
)

(5)

≤ Ei1:k [F (xk)]−
η

2
Ei1:k−1

[∥∇F (xk)∥2] +
η2L

2
σ2. (6)

≤ Ei1:k [F (xk)]−
η

2
Ei1:k [∥∇F (xk)∥2] +

η2L

2
σ2. (7)

It is noted that for (5), we used

Ei1:k [∥gk∥2] = Ei1:k−1

[
Eik [∥gk∥2|i1:k−1]

]
(8)

= Ei1:k−1

[
Eik [∥gk∥2|xk]

]
(9)

≤ Ei1:k−1
[∥∇F (xk)∥2] + σ2 ], (10)

where the last inequality is by the assumption that the variance is bounded by σ2.
For (6), we used η ≤ 1

L
. For (7), we used that ik is independent from xk.

Now take expectation over all the randomness on both sides of (7) and sum over
k = 1 to K,

Ei1:K

[
F (xk+1)− F (x1)

]
≤ −

K∑
k=1

η

2
Ei1:K [∥∇F (xk)∥2] +

Lη2σ2

2
.

Corollary 2.1. If x̂ is selected uniformly at random from x1, . . . , xK, then we have

Ei1:K

[
∥∇F (x̂)∥

]
≤

√
2
(
F (x1)− F∗

)
L

√
K

+

√
3σ
√(

F (x1)− F∗
)
L

K1/4
. (11)
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2 SGD with variance reduction (SVRG)

Figure 1: Progress of SGD (left) and GD (right) in practice

The variance of the stochastic gradient can be large. Thus, the question is how to
reduce the variance?

2.1 SGD with variance reduction (SVRG) Algorithm

min
x∈Rd

F (x), where F (x) :=
1

n

n∑
i=1

fi(x)

Algorithm: SGD with variance reduction (SVRG)

1: Set s = 1. Init v1 = x1. Learning rate η.
2: for stage s = 1, 2, . . . , S do
3: for iteration k = 1, 2, . . . , K do
4: Randomly pick a sample ik ∈ [n].
5: Set gk = ∇fik(xk)−∇fik(vs) +∇F (vs). (variance reduction)
6: Update xk+1 = xk − ηgk.
7: end for
8: Update the snapshot vs+1 =

1
k

∑K
k=1 xk.

9: Set x1 = vs+1

10: end for

2.2 Valid Stochastic Gradient
Let’s show that it is a valid stochastic gradient.

Lemma 2. (Unbiased Estimate)

Eik

[
∇fik(xk)−∇fik(vs) +∇F (vs)

]
= ∇F (xk). (12)
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Proof.

Eik

[
∇fik(xk)−∇fik(vs) +∇F (vs)

]
= ∇F (xk)−∇F (vs) +∇F (vs) = ∇F (xk).

Recall that Eik

[
∥gk∥22

]
is an upper bound of the variance of gk ∈ Rd. Let us analyze

the squared gradient norm Eik [∥gk∥22].

Lemma 3. (Variance bound)

Eik

[
∥gk∥22

]
≤ 4L

(
F (xk)− F (x∗)

)
+ 4L

(
F (vs)− F (x∗)

)
. (13)

Before we begin the proof of Lemma 3, we need to introduce two additional lemmas
as below:

Lemma 4. For any random variable Y ∈ Rd,

E
[
∥Y − E[Y ]∥22

]
= E[∥Y ∥22]−

(
E[∥Y ∥]

)2 ≤ E[∥Y ∥22]. (14)

Lemma 5. If each fi (·) is L-smooth convex, then

Eik

[
∥∇fik(x)−∇fik(x∗)∥2

]
≤ 2L

(
F (x)− F (x∗)

)
. (15)

Proof. We will proof Lemma 5 in Homework 3.

Proof. (Proof of Lemma 3)

Eik

[
∥gk∥22

]
= Eik

[
∥∇fik(xk)−∇fik(vs) +∇F (vs)∥22

]
= Eik

[
∥∇fik(xk)−∇fik(x∗) +∇fik(x∗)−∇fik(vs) +∇F (vs)∥22

]
≤ 2Eik

[
∥∇fik(xk)−∇fik(x∗)∥22

]
+ 2Eik

[
∥∇fik(x∗)−∇fik(vs) +∇F (vs)∥22

]
,

where the last inequality follows from ||a+ b||22 ≤ 2||a||22 +2||b||22. Based on Lemma 4,
we can further rewrite the second term in above inequality as

2Eik

[
∥∇fik(x∗)−∇fik(vs) +∇F (vs)∥22

]
= 2Eik

∥∇fik(x∗)−∇fik(vs)︸ ︷︷ ︸
:=Y

−
(
∇F (x∗)−∇F (vs)

)︸ ︷︷ ︸
:=E[Y ]

∥22



≤ 2Eik

∥∇fik(x∗)−∇fik(vs)∥22︸ ︷︷ ︸
:=||Y ||22

 .
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Therefore,

Eik

[
∥gk∥22

]
≤ 2Eik

[
∥∇fik(xk)−∇fik(x∗)∥22

]
+ 2Eik

[
∥∇fik(vs)−∇fik(x∗)∥22

]
.

By using Lemma 5, above equation could be further lead to

Eik [∥gk∥2] ≤ 4L
(
F (xk)− F (x∗)

)
+ 4L

(
F (vs)− F (x∗)

)
.

2.3 Convergence for each stage
Recall s ∈ [S] is the index of a stage. Denote zs all the randomness (in the inner
iterations) at stage s.

Theorem 3. Suppose each fi(·) is L-smooth and µ-strongly convex. Setting η = 1
8L

and K = 64L
µ
. Then, at each stage s,

Ezs

[
F (vs+1)− F (x∗)

]
≤ 3

4

(
F (vs)− F (x∗)

)
, (16)

where x∗ ∈ argminx F (x).

Proof. By Theorem 1, we have

1

K

K∑
k=1

Ezs

[
F (xk)− F (x∗)

]
≤ η

2K

 K∑
k=1

Ezs

[
∥gk∥22

]+
F (x1)− F (x∗)

ηµK
. (17)

Recall the lemma of the variance bound, i.e., Lemma 3, we have, given xk and vs,

Eik [∥gk∥22] ≤ 4L
(
F (xk)− F (x∗)

)
+ 4L

(
F (vs)− F (x∗)

)
. (18)

Taking expectation over all the randomness at stage s on both sides of (18) further,
we have

Ezs [∥gk∥22] ≤ Ezs

[
4L
(
F (xk)− F (x∗)

)
+ 4L

(
F (vs)− F (x∗)

)]
. (19)

Summing (19) over all the inner iterations at stage s, we get

η

2K

K∑
k=1

Ezs [∥gk∥2] ≤
η

2K

K∑
k=1

Ezs

[
4L
(
F (xk)− F (x∗)

)
+ 4L

(
F (x1)− F (x∗)

])
. (20)
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Combining (17) and (20), we have

(1− 2ηL)
1

K

K∑
k=1

Ezs

[
F (xk)− F (x∗)

]
≤
(
2ηL+

1

ηµK

)(
F (x1)− F (x∗)

)
. (21)

Setting η = 1
8L

and K = 64L
µ
, we have

Ezs

[
F (x̄K)− F (x∗)

]
≤ 1

K

K∑
k=1

Ezs

[
F (xk)− F (x∗)

]
≤ 3

4

(
F (x1)− F (x∗)

)
, (22)

where the first inequality follows from Jensen’s inequality.
By the algorithm design, we have that x1 is equal to the snapshot vs at each stage

s. Therefore, 3
4

(
F (x1)− F (x∗)

)
= 3

4

(
F (vs)− F (x∗)

)
. Additionally, x̄k is used to

initialize x1 and the snapshot vs+1 in the next stage. Thus, Ezs

[
F (x̄K)− F (x∗)

]
=

Ezs

[
F (vs+1)− F (x∗)

]
. We can hence re-write (22) as

Ezs

[
F (vs+1)− F (x∗)

]
≤ 3

4

(
F (vs)− F (x∗)

)
.

Thus, the above means that the expected gap is shrinking within a constant factor in
each stage.

3 Complexity Analysis

3.1 Iteration complexity of SVRG
To get an expected ϵ-gap, the total number of stages is:

Ez1:s

[
F (vs+1)− F (x∗)

]
=
∑
·

Pr (z1:s−1 = ·)Ezs

[
F (vs+1)− F (x∗)|z1:s−1 = ·

]
(23)

= Ez1:s−1

[
Ezs

[
F (vs+1)− F (x∗)|z1:s−1

] ]
.

According to Theorem 3, we have

Ez1:s

[
F (vs+1)− F (x∗)

]
≤ 3

4
Ez1:s

[
F (vs)− F (x∗)

]
≤
(
3

4

)S (
F (v1)− F (x∗)

)
≤ ϵ
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⇔ S ≥ 4 log

(
F (v1)− F (x∗)

ϵ

)
= O

(
log

(
1

ϵ

))
. According to the above calculations, the total number of stochastic gradient com-
putations could be represented by

2×K × S = O

(
L

µ
log

(
1

ϵ

))
. (24)

Total number of Full gradient computations is

S = O

(
n log

(
1

ϵ

))
. (25)

Here, the cost of the full gradient computation = cost of n stochastic gradient com-
putation. Total number of (equivalent) stochastic gradient computations is

O

(
L

µ
log

(
1

ϵ

))
+O

(
n log

(
1

ϵ

))
. (26)

3.2 SVRG v.s. GD
Therefore, we could obtain

runtime of SVRG
runtime of GD

=
# (equivalent) stochastic gradient computs. of SVRG

# (equivalent) stochastic gradient computs. of GD

=

(
L
µ
+ n
)
log(1

ϵ
)

L
µ
log
(
1
ϵ

)
× n

. (27)

Lets prove that the runtime of SVRG is generally smaller than runtime of GD, i.e.

runtime of SVRG
runtime of GD

≤ 1 ⇔

(
L
µ
+ n
)
log
(
1
ϵ

)
L
µ
log
(
1
ϵ

)
× n

≤ 1

⇔ n ≤ (n− 1)
L

µ

⇔ µ ≤ L, as n → ∞

which is always true. The proof is completed.
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3.3 SVRG v.s. SGD

runtime of SVRG
runtime of SGD

=

(
L
µ
+ n
)
log
(
1
ϵ

)
1
ϵ
× 1

.

The condition for SVRG to be faster than SGD than SGD is when

(
L

µ
+ n

)
log

(
1

ϵ

)
≪ 1

ϵ
⇔
(
L

µ
+ n

)
≪

1
ϵ

log 1
ϵ

.

Figure 2: ℓ2 - regularized logistic regression on CIFAR-10. [Johnson (2013)]

Bibliographic notes
More information can be found in [Drusvyatskiy (2020)], [Vishnoi (2021)], [Rakhlin (2012)],
and [Johnson (2013)].
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