ECE 273 Convex Optimization and Applications Instructor: Jun-Kun Wang Scribe: Shaoxiu Wei, Jiajie Yu April 25, 2024 Editor/TA: Marialena Sfyraki

Lecture 8: SGD with Variance Reduction

1 Review of Lecture 7: Introduction to stochastic optimization

We begin by reviewing the Stochastic Gradient Descent (SGD).

1.1 Stochastic Optimization

Consider $\min_{x \in \mathbb{R}^d} F(x)$, where $F(x) := \mathbb{E}_z[f(x; z)]$.

Algorithm: Stochastic Gradient Descent (SGD)

1: **for** $k = 1, 2, ...$ **do** 2: Compute a stochastic gradient g_k that satisfies $\mathbb{E}_z[g_k] = \nabla F(x_k)$ 3: $x_{k+1} = x_k - \eta g_k$. 4: **end for**

1.2 SGD v.s. GD

Table 1: Convergence rates for different optimization scenarios. [[Rakhlin \(2012\)](#page-9-0)]

1.3 Iteration complexity of SGD

Denote $i_{1:K}$ all the randomness from iteration 1 to *K*, i.e., i_1, i_2, \ldots, i_K .

Theorem 1. Let $F(x) = \mathbb{E}_z[f(x; z)] : \mathbb{R}^d \to \mathbb{R}$ be a convex function. Consider the *update*

$$
x_{k+1} = x_k - \eta g_k,
$$

where $\mathbb{E}_z[g_k] = \nabla F(x_k)$ *. Suppose* $x_* = \arg \min F(x)$ *exists and the initial distance is bounded, i.e.,* $||x_1 - x_*||_2 \leq D$ *. Then,*

$$
\frac{1}{K}\sum_{k=1}^K \mathbb{E}_{i_{1:K}}\left[F(x_k) - F(x_*)\right] \leq \frac{\eta}{2K} \left(\sum_{k=1}^K \mathbb{E}_{i_{1:K}}\left[\|g_k\|_2^2\right]\right) + \frac{\|x_1 - x_*\|_2^2}{2\eta K},
$$

where $\bar{x}_K := \frac{1}{K}$ $\frac{1}{K} \sum_{k=1}^{K} x_k$.

Caution!!! To be rigorous, we need to identify conditions such that the stochastic gradient norm is bounded.

Lemma 1. $\mathbb{E}_{i_k} [\Vert g_k \Vert_2^2]$ is an upper bound of the variance of the stochastic gradient.

Proof.

$$
Var(g_k) \triangleq \mathbb{E}_{i_k} [(g_k - \mathbb{E}_{i_k} [g_k])^2]
$$

\n(since $\mathbb{E}_{i_k} [g_k] = \nabla F(x_k)$)
\n $= \mathbb{E}_{i_k} [||g_k||_2^2] - 2\mathbb{E}_{i_k} [(g_k, \mathbb{E}_{i_k} [g_k])] + ||\nabla F(x_k)||_2^2$
\n $= \mathbb{E}_{i_k} [||g_k||_2^2] - 2||\nabla F(x_k)||_2^2 + ||\nabla F(x_k)||_2^2$
\n $\leq \mathbb{E}_{i_k} [||g_k||_2^2].$

1.4 SGD for non-convex problems

Theorem 2. Assume that the variance of the stochastic gradient $\nabla f(x; z)$ is at most σ^2 for all x, i.e., $\mathbb{E}_z [\|\nabla f(x; z) - \nabla F(x)\|_2^2] \leq \sigma^2$. Suppose $F(\cdot)$ is L-smooth. Then, *SGD with the step size* $\eta \leq \frac{1}{L}$ *L has*

$$
\sum_{k=1}^{K} \mathbb{E}_{i_{1:K}} \left[\|\nabla F(x_k)\|_2^2 \right] \le \frac{2(F(x_1) - F_*)}{\eta} + \eta L \sigma^2 K.
$$

Proof. (Proof of the theorem) Starting from the smoothness, we have, given *xk*,

$$
F(x_{k+1}) \le F(x_k) + \langle \nabla F(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2 \tag{1}
$$

$$
= F(x_k) - \eta \langle \nabla F(x_k), g_k \rangle + \frac{\eta^2 L}{2} ||g_k||^2
$$
\n(2)

Take expectation over the randomness from 1 to *k* on both sides, we have

$$
\mathbb{E}_{i_{1:k}}[F(x_{k+1})] \leq \mathbb{E}_{i_{1:k}}[F(x_k)] - \eta \mathbb{E}_{i_{1:k}}[\langle \nabla F(x_k), g_k \rangle] + \frac{\eta^2 L}{2} \mathbb{E}_{i_{1:k}}[\|g_k\|^2]
$$
(3)

$$
= \mathbb{E}_{i_{1:k}}[F(x_k)] - \eta \mathbb{E}_{i_{1:k-1}}[\|\nabla F(x_k)\|^2] + \frac{\eta^2 L}{2} \mathbb{E}_{i_{1:k}}[\|g_k\|^2]
$$
\n(4)

$$
\leq \mathbb{E}_{i_{1:k}}[F(x_k)] - \eta \mathbb{E}_{i_{1:k-1}}[\|\nabla F(x_k)\|^2] + \frac{\eta^2 L}{2} \left(\mathbb{E}_{i_{1:k-1}}[\|\nabla F(x_k)\|^2] + \sigma^2 \right) \tag{5}
$$

$$
\leq \mathbb{E}_{i_{1:k}}[F(x_k)] - \frac{\eta}{2} \mathbb{E}_{i_{1:k-1}}[\|\nabla F(x_k)\|^2] + \frac{\eta^2 L}{2} \sigma^2. \tag{6}
$$

$$
\leq \mathbb{E}_{i_{1:k}}[F(x_k)] - \frac{\eta}{2} \mathbb{E}_{i_{1:k}}[\|\nabla F(x_k)\|^2] + \frac{\eta^2 L}{2} \sigma^2. \tag{7}
$$

It is noted that for ([5\)](#page-2-0), we used

$$
\mathbb{E}_{i_{1:k}}[\|g_k\|^2] = \mathbb{E}_{i_{1:k-1}}\left[\mathbb{E}_{i_k}[\|g_k\|^2 | i_{1:k-1}]\right] \tag{8}
$$
\n
$$
= \mathbb{E}_{i_{1:k-1}}\left[\mathbb{E}_{i_k}[\|g_k\|^2 | x_{1:k-1}]\right] \tag{9}
$$

$$
= \mathbb{E}_{i_{1:k-1}} \left[\mathbb{E}_{i_k} [\|g_k\|^2 | x_k] \right] \tag{9}
$$

$$
\leq \mathbb{E}_{i_{1:k-1}}[\|\nabla F(x_k)\|^2] + \sigma^2 \,],\tag{10}
$$

where the last inequality is by the assumption that the variance is bounded by σ^2 . For ([6](#page-2-1)), we used $\eta \leq \frac{1}{L}$ $\frac{1}{L}$. For [\(7](#page-2-2)), we used that i_k is independent from x_k .

Now take expectation over all the randomness on both sides of ([7](#page-2-2)) and sum over $k = 1$ to K ,

$$
\mathbb{E}_{i_{1:K}}\left[F(x_{k+1}) - F(x_1)\right] \leq -\sum_{k=1}^{K} \frac{\eta}{2} \mathbb{E}_{i_{1:K}}[\|\nabla F(x_k)\|^2] + \frac{L\eta^2 \sigma^2}{2}.
$$

Corollary 2.1. *If* \hat{x} *is selected uniformly at random from* x_1, \ldots, x_K *, then we have*

$$
\mathbb{E}_{i_{1:K}}\left[\|\nabla F(\hat{x})\|\right] \le \frac{\sqrt{2\left(F(x_1) - F_*\right)L}}{\sqrt{K}} + \frac{\sqrt{3\sigma\sqrt{\left(F(x_1) - F_*\right)L}}}{K^{1/4}}.\tag{11}
$$

2 SGD with variance reduction (SVRG)

Figure 1: Progress of SGD (left) and GD (right) in practice

The variance of the stochastic gradient can be large. Thus, the question is **how to reduce the variance?**

2.1 SGD with variance reduction (SVRG) Algorithm

$$
\min_{x \in \mathbb{R}^d} F(x), \text{ where } F(x) := \frac{1}{n} \sum_{i=1}^n f_i(x)
$$

Algorithm: SGD with variance reduction (SVRG)

1: Set $s = 1$. Init $v_1 = x_1$. Learning rate η . 2: **for stage** $s = 1, 2, ..., S$ **do** 3: **for iteration** $k = 1, 2, \ldots, K$ **do** 4: Randomly pick a sample $i_k \in [n]$. 5: Set $g_k = \nabla f_{i_k}(x_k) - \nabla f_{i_k}(v_s) + \nabla F(v_s)$. (variance reduction) 6: Update $x_{k+1} = x_k - \eta g_k$. 7: **end for** 8: Update the snapshot $v_{s+1} = \frac{1}{k}$ $\frac{1}{k} \sum_{k=1}^{K} x_k$. 9: Set $x_1 = v_{s+1}$ 10: **end for**

2.2 Valid Stochastic Gradient

Let's show that it is a valid stochastic gradient.

Lemma 2. (**Unbiased Estimate**)

$$
\mathbb{E}_{i_k} \left[\nabla f_{i_k}(x_k) - \nabla f_{i_k}(v_s) + \nabla F(v_s) \right] = \nabla F(x_k). \tag{12}
$$

Proof.

$$
\mathbb{E}_{i_k} \left[\nabla f_{i_k}(x_k) - \nabla f_{i_k}(v_s) + \nabla F(v_s) \right] = \nabla F(x_k) - \nabla F(v_s) + \nabla F(v_s) = \nabla F(x_k).
$$

Recall that \mathbb{E}_{i_k} $[||g_k||_2^2]$ is an upper bound of the variance of $g_k \in \mathbb{R}^d$. Let us analyze the squared gradient norm $\mathbb{E}_{i_k}[\Vert g_k \Vert_2^2]$.

Lemma 3. (**Variance bound**)

$$
\mathbb{E}_{i_k} [||g_k||_2^2] \le 4L \left(F(x_k) - F(x_*) \right) + 4L \left(F(v_s) - F(x_*) \right). \tag{13}
$$

Before we begin the proof of Lemma [3,](#page-4-0) we need to introduce two additional lemmas as below:

Lemma 4. For any random variable $Y \in \mathbb{R}^d$,

$$
\mathbb{E}\left[\|Y - \mathbb{E}[Y]\|_2^2\right] = \mathbb{E}[\|Y\|_2^2] - \left(\mathbb{E}[\|Y\|]\right)^2 \le \mathbb{E}[\|Y\|_2^2].\tag{14}
$$

Lemma 5. *If each* $f_i(\cdot)$ *is L-smooth convex, then*

$$
\mathbb{E}_{i_k} \left[\|\nabla f_{i_k}(x) - \nabla f_{i_k}(x_*)\|^2 \right] \le 2L \left(F(x) - F(x_*) \right). \tag{15}
$$

 \Box

Proof. We will proof Lemma [5](#page-4-1) in Homework 3.

Proof. (Proof of Lemma [3\)](#page-4-0)

$$
\mathbb{E}_{i_k} \left[\|g_k\|_2^2 \right] = \mathbb{E}_{i_k} \left[\|\nabla f_{i_k}(x_k) - \nabla f_{i_k}(v_s) + \nabla F(v_s) \|_2^2 \right]
$$
\n
$$
= \mathbb{E}_{i_k} \left[\|\nabla f_{i_k}(x_k) - \nabla f_{i_k}(x_*) + \nabla f_{i_k}(x_*) - \nabla f_{i_k}(v_s) + \nabla F(v_s) \|_2^2 \right]
$$
\n
$$
\leq 2 \mathbb{E}_{i_k} \left[\|\nabla f_{i_k}(x_k) - \nabla f_{i_k}(x_*) \|_2^2 \right]
$$
\n
$$
+ 2 \mathbb{E}_{i_k} \left[\|\nabla f_{i_k}(x_*) - \nabla f_{i_k}(v_s) + \nabla F(v_s) \|_2^2 \right],
$$

where the last inequality follows from $||a+b||_2^2 \leq 2||a||_2^2 + 2||b||_2^2$. Based on Lemma [4](#page-4-2), we can further rewrite the second term in above inequality as

$$
2\mathbb{E}_{i_k} \left[\|\nabla f_{i_k}(x_*) - \nabla f_{i_k}(v_s) + \nabla F(v_s) \|_{2}^{2} \right]
$$

=
$$
2\mathbb{E}_{i_k} \left[\|\nabla f_{i_k}(x_*) - \nabla f_{i_k}(v_s) - \underbrace{(\nabla F(x_*) - \nabla F(v_s))}_{:=E[Y]} \|_{2}^{2} \right]
$$

$$
\leq 2\mathbb{E}_{i_k} \left[\underbrace{\|\nabla f_{i_k}(x_*) - \nabla f_{i_k}(v_s) \|_{2}^{2}}_{:=||Y||_{2}^{2}} \right].
$$

Therefore,

$$
\mathbb{E}_{i_k} \left[\|g_k\|_2^2 \right] \leq 2 \mathbb{E}_{i_k} \left[\|\nabla f_{i_k}(x_k) - \nabla f_{i_k}(x_*)\|_2^2 \right] + 2 \mathbb{E}_{i_k} \left[\|\nabla f_{i_k}(v_s) - \nabla f_{i_k}(x_*)\|_2^2 \right].
$$

By using Lemma [5,](#page-4-1) above equation could be further lead to

$$
\mathbb{E}_{i_k}[\|g_k\|^2] \le 4L\left(F(x_k) - F(x_*)\right) + 4L\left(F(v_s) - F(x_*)\right).
$$

2.3 Convergence for each stage

Recall $s \in [S]$ is the index of a stage. Denote z_s all the randomness (in the inner iterations) at stage *s*.

Theorem 3. Suppose each $f_i(\cdot)$ is L-smooth and μ -strongly convex. Setting $\eta = \frac{1}{8l}$ 8*L* and $K = 64\frac{L}{\mu}$. Then, at each stage *s*,

$$
\mathbb{E}_{z_s} \left[F(v_{s+1}) - F(x_*) \right] \le \frac{3}{4} \left(F(v_s) - F(x_*) \right), \tag{16}
$$

 $where x_* \in \arg \min_x F(x).$

Proof. By Theorem [1](#page-0-0), we have

$$
\frac{1}{K} \sum_{k=1}^{K} \mathbb{E}_{z_s} \left[F(x_k) - F(x_*) \right] \le \frac{\eta}{2K} \left(\sum_{k=1}^{K} \mathbb{E}_{z_s} \left[\|g_k\|_2^2 \right] \right) + \frac{F(x_1) - F(x_*)}{\eta \mu K}.
$$
 (17)

Recall the lemma of the variance bound, i.e., Lemma [3,](#page-4-0) we have, given x_k and v_s ,

$$
\mathbb{E}_{i_k}[\|g_k\|_2^2] \le 4L\left(F(x_k) - F(x_*)\right) + 4L\left(F(v_s) - F(x_*)\right). \tag{18}
$$

Taking expectation over all the randomness at stage *s* on both sides of ([18](#page-5-0)) further, we have

$$
\mathbb{E}_{z_s}[\|g_k\|_2^2] \leq \mathbb{E}_{z_s} \left[4L \left(F(x_k) - F(x_*) \right) + 4L \left(F(v_s) - F(x_*) \right) \right]. \tag{19}
$$

Summing ([19](#page-5-1)) over all the inner iterations at stage *s*, we get

$$
\frac{\eta}{2K} \sum_{k=1}^{K} \mathbb{E}_{z_s} [\|g_k\|^2] \le \frac{\eta}{2K} \sum_{k=1}^{K} \mathbb{E}_{z_s} \left[4L \left(F(x_k) - F(x_*) \right) + 4L \left(F(x_1) - F(x_*) \right) \right). (20)
$$

Combining (17) and (20) (20) (20) , we have

$$
(1 - 2\eta L) \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}_{z_s} \left[F(x_k) - F(x_*) \right] \leq \left(2\eta L + \frac{1}{\eta \mu K} \right) \left(F(x_1) - F(x_*) \right). \tag{21}
$$

Setting $\eta = \frac{1}{8}$ $\frac{1}{8L}$ and $K = 64\frac{L}{\mu}$, we have

$$
\mathbb{E}_{z_s} \left[F(\bar{x}_K) - F(x_*) \right] \le \frac{1}{K} \sum_{k=1}^K \mathbb{E}_{z_s} \left[F(x_k) - F(x_*) \right] \le \frac{3}{4} \left(F(x_1) - F(x_*) \right), \tag{22}
$$

where the first inequality follows from Jensen's inequality.

By the algorithm design, we have that x_1 is equal to the snapshot v_s at each stage *s*. Therefore, $\frac{3}{4}(F(x_1) - F(x_*)) = \frac{3}{4}$ $\frac{3}{4}(F(v_s) - F(x_*))$. Additionally, \bar{x}_k is used to initialize x_1 and the snapshot v_{s+1} in the next stage. Thus, $\mathbb{E}_{z_s}\left[F(\bar{x}_K) - F(x_*)\right] =$ $\mathbb{E}_{z_s}\left[F(v_{s+1}) - F(x_*)\right]$. We can hence re-write ([22](#page-6-0)) as

$$
\mathbb{E}_{z_s}\left[F(v_{s+1}) - F(x_*)\right] \leq \frac{3}{4}\left(F(v_s) - F(x_*)\right).
$$

Thus, the above means that the expected gap is shrinking within a constant factor in each stage.

 \Box

3 Complexity Analysis

3.1 Iteration complexity of SVRG

To get an expected ϵ -gap, the total number of stages is:

$$
\mathbb{E}_{z_{1:s}} [F(v_{s+1}) - F(x_*)]
$$
\n
$$
= \sum \Pr (z_{1:s-1} = \cdot) \mathbb{E}_{z_s} [F(v_{s+1}) - F(x_*) | z_{1:s-1} = \cdot] \tag{23}
$$
\n
$$
= \mathbb{E}_{z_{1:s-1}} \left[\mathbb{E}_{z_s} [F(v_{s+1}) - F(x_*) | z_{1:s-1}] \right].
$$

According to Theorem [3](#page-5-4), we have

$$
\mathbb{E}_{z_{1:s}}\left[F(v_{s+1}) - F(x_{*})\right] \leq \frac{3}{4} \mathbb{E}_{z_{1:s}}\left[F(v_{s}) - F(x_{*})\right]
$$

$$
\leq \left(\frac{3}{4}\right)^{S}\left(F(v_{1}) - F(x_{*})\right)
$$

$$
\leq \epsilon
$$

$$
\Leftrightarrow S \ge 4 \log \left(\frac{F(v_1) - F(x_*)}{\epsilon} \right) = \mathcal{O} \left(\log \left(\frac{1}{\epsilon} \right) \right)
$$

. According to the above calculations, the total number of stochastic gradient computations could be represented by

$$
2 \times K \times S = \mathcal{O}\left(\frac{L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right). \tag{24}
$$

Total number of Full gradient computations is

$$
S = \mathcal{O}\left(n\log\left(\frac{1}{\epsilon}\right)\right). \tag{25}
$$

Here, the cost of the full gradient computation $=$ cost of *n* stochastic gradient computation. Total number of (equivalent) stochastic gradient computations is

$$
\mathcal{O}\left(\frac{L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right) + \mathcal{O}\left(n\log\left(\frac{1}{\epsilon}\right)\right). \tag{26}
$$

3.2 SVRG v.s. GD

Therefore, we could obtain

$$
\begin{aligned}\n\text{ runtime of SVRG} \\
\frac{\# \text{ (equivalent) stochastic gradient computes. of SVRG}}{\# \text{ (equivalent) stochastic gradient computes. of GD}} \\
&= \frac{\left(\frac{L}{\mu} + n\right) \log\left(\frac{1}{\epsilon}\right)}{\frac{L}{\mu} \log\left(\frac{1}{\epsilon}\right) \times n}.\n\end{aligned} \tag{27}
$$

Lets prove that the runtime of SVRG is generally smaller than runtime of GD, i.e.

$$
\frac{\text{running of SVRG}}{\text{ runtime of GD}} \le 1 \Leftrightarrow \frac{\left(\frac{L}{\mu} + n\right) \log\left(\frac{1}{\epsilon}\right)}{\frac{L}{\mu} \log\left(\frac{1}{\epsilon}\right) \times n} \le 1
$$
\n
$$
\Leftrightarrow n \le (n-1) \frac{L}{\mu}
$$
\n
$$
\Leftrightarrow \mu \le L, \text{ as } n \to \infty
$$

which is always true. The proof is completed.

3.3 SVRG v.s. SGD

$$
\frac{\text{ runtime of SVRG}}{\text{ runtime of SGD}} = \frac{\left(\frac{L}{\mu} + n\right) \log\left(\frac{1}{\epsilon}\right)}{\frac{1}{\epsilon} \times 1}.
$$

The condition for SVRG to be faster than SGD than SGD is when

Figure 2: *ℓ*² - regularized logistic regression on CIFAR-10. [\[Johnson \(2013\)\]](#page-9-1)

Bibliographic notes

More information can be found in [[Drusvyatskiy \(2020\)\]](#page-8-0), [\[Vishnoi \(2021\)](#page-9-2)], [\[Rakhlin \(2012\)\]](#page-9-0), and [\[Johnson \(2013\)](#page-9-1)].

References

[Drusvyatskiy (2020)] Dmitriy Drusvyatskiy. Convex Analysis and Nonsmooth Optimization. 2020.

- [Vishnoi (2021)] Nisheeth K. Vishnoi. Algorithms for Convex Optimization. Cambridge University Press, 2021.
- [Rakhlin (2012)] Alexander Rakhlin. Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization. ICML, 2012.
- [Johnson (2013)] Rie Johnson. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction. NeurIPS, 2013.