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Lecture 7: Introduction to Stochastic Optimization

1 Review: Projected Gradient Descent and Frank-
Wolfe Method

We begin by reviewing some results concerning Projected Gradient Descent and Frank-
Wolfe method. Below is a formal statement of the Frank-Wolfe method algorithm.

Algorithm 1 Frank-Wolfe method
1: Initialize x1 ∈ C.
2: for k = 1, 2, . . . do
3: vk = argminv∈C⟨v,∇f(xk)⟩ (linear optimization)
4: xk+1 = (1− ηk)xk + ηkvk, where ηk ∈ [0, 1].
5: end for

Theorem 1. Assume f(·) is a L-smooth convex function. Denote D := maxx,y∈C ∥x−
y∥2, ∀x,y ∈ C as the diameter of the set C. Let ηk = min{1, 2

k
} ∈ [0, 1]. Then,

Frank-Wolfe has:

f(xK)− f(x∗) ≤
2LD2

K
.

Recall that PGD and GD share the same convergence rate. Specifically, if PGD
is to achieve an ϵ-optimality gap in a constrained optimization problem: f(xk) −
minx∈C f(x) ≤ ϵ, or if GD is to achieve an ϵ-optimality gap in an unconstrained
optimization problem: f(xk)−minx∈Rd f(x) ≤ ϵ, then the table below illustrates the
convergence rates for both PGD and GD.

Convergence Rate PGD GD
L-smooth convex O

(
L
k

)
O
(
L
k

)
L-smooth and µ-strongly convex O

(
exp

(
− µ

L
k
))

O
(
exp

(
− µ

L
k
))

A natural question is: Can we achieve a faster convergence rate than O
(

1
K

)
using

Frank-Wolfe method when f is assumed to be smooth and strongly convex? The
answer to this crucially relies on the regularity of the constrained set. We present
two examples (see [1] and [2]) in the following.
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Example 1 (A negative result). If C is a probability simplex, i.e., C := {x ∈ Rd :∑d
i=1 x[i] ≤ 1, x[i] ≥ 0}, then K = Ω

(
max

(
L
ϵ
, d
2

))
.

Example 2 (A positive result). Frank-Wolfe method gives a faster convergence rate
when C is a µ-strongly convex set w.r.t. a norm ∥ · ∥, i.e., x, z ∈ C implies that a ball
centered at αx+(1−α)z with a radius in α(1−α)µ

2
∥x− z∥2 is in C, where α ∈ [0, 1].

In particular, any lp norm with p ∈ (1, 2] satisfies the requirement.

We refer to [3] and [4] for further details.

2 Introduction to Stochastic Optimization
Consider the following problem:

min
x∈Rd

F (x), where F (x) := Ez[f(x; z)].

Here z denotes the randomness of this problem. Below is a formal statement of the
SGD algorithm.

Algorithm 2 Stochastic Gradient Descent (SGD)
1: for k = 1, 2, . . . do
2: Compute a stochastic gradient gk that satisfies Ez[gk] = ∇F (xk)

3: xk+1 = xk − ηgk.
4: end for

Example 3 (Finite-sum problem). Let F (x) := 1
n

∑n
i=1 fi(x) = Ei[fi(x)]. Then the

SGD algorithm for finite-sum problem can be explicitly stated as follows:

Algorithm 3 Stochastic Gradient Descent (SGD) for finite-sum problem
1: for k = 1, 2, . . . do
2: Randomly sample ik ∈ [n]

3: Compute gk = ∇fik(xk)

4: xk+1 = xk − ηgk.
5: end for

Notice that,

E[gk] =
n∑

i=1

P (ik = i) ∇fi(xk) =
n∑

i=1

1

n
∇fi(xk) = ∇F (xk).
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The convergence rates for SGD and GD are presented in the following table.

Convergence Rate SGD GD
L-smooth convex O

(
1√
K

)
O
(

1
K

)
L-smooth and µ-strongly convex O

(
1
K

)
O
(
exp(−K)

)

For SGD, we compute
ϵ =

1√
K
⇔ K =

1

ϵ2
,

so we asymptotically need 1
ϵ2

iterations to reach an ϵ-optimality gap. For GD, we
compute

ϵ =
1

K
⇔ K =

1

ϵ
,

so we asymptotically need 1
ϵ

iterations to reach an ϵ-optimality gap. Therefore, con-
sidering the practical scenario where 0 < ϵ << 1, SGD generally requires more
iterations than GD to reach the given optimality gap. However, in terms of running
time, formally we have

running time of SGD
running time of GD

=
# iterations of SGD
# iterations of GD

× cost per step SGD
cost per step GD

.

Comparing the convergence rate of SGD and GD, we have (see [5]) # iterations of SGD
# iterations of GD =

1
ϵ2
/1
ϵ
. In each iteration of SGD, we only need to compute the gradient for one random

case among n possibilities, so cost per step SGD
cost per step GD = 1

n
. Therefore,

running time of SGD
running time of GD

=
1

ϵn
.

In order for SGD to have a better performance than GD, i.e., running time of SGD
running time of GD << 1,

we need to ensure 1
ϵ
<< n. This condition is usually fulfilled when we have a very

large sample size/data set. For example, consider the empirical risk minimization
problem. Let {(yi, zi), i ∈ [n]} be the data set and the function F (x) = 1

n

∑n
i=1 fi(x),

where fi(x) =
1
2
(yi−zTi x)

2. Since, in practical applications, we may have a very large
n and expect a relatively large ϵ considering the possible overshooting effect, it is
reasonable to assume that 1

ϵ
<< n.
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3 Iteration Complexity of SGD:
We now present a theorem that provides an upper-bound for the optimality gap
obtained through SGD.

Theorem 2. Let F (x) = Ez[f(x; z)] : Rd → R be a convex function. Consider the
update

xk+1 = xk − ηgk,

where Ez[gk] = ∇F (xk). Suppose x∗ = argminF (x) exists and the initial distance is
bounded, i.e., ∥x1 − x∗∥ ≤ D. Then,

1

K
E

 K∑
k=1

(F (xk)− F (x∗) )

 ≤ η

2K

 K∑
k=1

E
[
∥gk∥22

]+
∥x1 − x∗∥22

2ηK
(1)

Proof. One way to gauge the progress of an iterative optimization algorithm is through
the distance metric dk, which calculates the Euclidean distance between the updated
point in the k-th iteration, denoted as xk+1, and the global minima point x∗. This
can be expressed as dk = ||xk+1 − x∗||2 .

Now, when we apply Stochastic Gradient Descent (SGD) to the convex function
F (x) = Ez[f(x; z)] : Rd → R, it is clear from the nature of the SGD algorithm (refer
to Algorithm 2) that the distance metric dk = ||xk+1 − x∗||2, will be a random vari-
able since xk+1 is a random variable. Therefore, our first step in this proof will be to
consider the expected value of the squared distance metric dk, that is E[||xk+1−x∗||22] .

We have the following,

E[ ||xk+1 − x∗||22 ] = E[ ||xk − ηgk − x∗||22 ] (SGD’s update, see Algorithm 2)

= E[ ||xk − x∗||22 − 2η⟨gk, xk − x∗⟩ + η2||gk||22 ]

Rearranging the above equation we get,

2η · E[ ⟨gk, xk − x∗⟩ ] = E[ ||xk − x∗||22 − ||xk+1 − x∗||22 ] + η2E[ ||gk||22 ]

⇔ E[ ⟨gk, xk − x∗⟩ ] =
E[ ||xk − x∗||22 − ||xk+1 − x∗||22 ]

2η
+

η

2
E[ ||gk||22 ]

(2)

Now, notice the term inside the expectation operator on the L.H.S of the equation
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(2), i.e. ⟨gk, xk−x∗⟩ . In this term, it is evident that gk and xk are random variables.
Let us understand how.

In line 2 of the SGD Algorithm (refer to 2), it states: “Compute a stochastic gra-
dient gk such that Ez[gk] = ∇F (xk)”. This definition of the stochastic gradient gk
indicates that gk is influenced by both the current point xk and the randomness asso-
ciated with the k-th iteration, denoted as zk (which corresponds to the sampled index
number in the finite-sum problem). Consequently, considering the update expression
of SGD as xk+1 = xk − ηgk, it follows that the next update xk+1 also depends on the
current point xk and the randomness of the k-th iteration zk.

Let’s begin by assuming that the initial point x1 is known. Consequently, the ran-
domness affecting g1 (and therefore x2) is entirely based on z1. In other words, if z1
is known, then g1 (and thus x2) can be computed deterministically.

Now, let’s delve into the second iteration step. We understand that the randomness
influencing g2 (and hence x3) relies on both z2 and the current point x2, whose ran-
domness, in turn, depends on z1. This implies that if both z1 and z2 are known, then
g2 (and hence x3) can be determined with certainty. Consequently, through this anal-
ysis and the application of mathematical induction, we can infer that gk is influenced
by z1, z2, . . . , zk, while xk depends on z1, z2, . . . , zk−1.

So, with the analysis that we performed above, and denoting z1:k = z1, z2, . . . , zk, we
can write that,

E[ ⟨gk, xk − x∗⟩ ] = Ez1:k [ ⟨gk, xk − x∗⟩ ]

=
∑
◦

Pr(z1:k−1 = ◦) Ezk [⟨gk, xk − x∗⟩ | z1:k−1 = ◦] (Law of Total Expectation)

= Ez1:k−1

[
Ezk [ ⟨gk, xk − x∗⟩ | z1:k−1]

]
= Ez1:k−1

[
Ezk [ ⟨gk, xk − x∗⟩ | xk]

]
(Since, xk is determined by z1:k−1)

(3)

Now, let us suppose that we are dealing with the finite-sum problem, where we
attempt to minimize F (x) := 1

n

∑n
i=1 fi(x) = Ei[fi(x)] . From Algorithm 3, it is

evident that when SGD is applied for solving this problem, the index ik is the source
of randomness associated with each iteration. Furthermore, after randomly sampling

5



ik, the stochastic gradient is computed as: gk = ∇fik(xk) . So, the inner expectation
term Ezk [ ⟨gk, xk − x∗⟩ | xk] in Equation (3) can be written as follows,

Ezk [ ⟨gk, xk − x∗⟩ | xk] = Eik [ ⟨∇fik(xk), xk − x∗⟩ | xk]

=
n∑

i=1

Pr(ik = i) ⟨∇fi(xk), xk − x∗⟩

=
n∑

i=1

1

n
⟨∇fi(xk), xk − x∗⟩

= ⟨
n∑

i=1

1

n
∇fi(xk), xk − x∗⟩

= ⟨ ∇F (xk), xk − x∗⟩

(4)

The final equation follows from the fact that

F (x) =
1

n

n∑
i=1

fi(x) ⇒ ∇F (xk) =
n∑

i=1

1

n
∇fi(xk).

Using the above expression for Ezk [ ⟨gk, xk − x∗⟩ | xk] in the R.H.S of Equation (3),
we can write the following,

E[ ⟨gk, xk − x∗⟩ ] = E z1:k−1

[
⟨∇F (xk), xk − x∗ ⟩

]
= E z1:k

[
⟨∇F (xk), xk − x∗ ⟩

]
(Since, xk is independent of zk)

(5)
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Since it is given that F (x) = Ez[f(x; z)] : Rd → R is a convex function, therefore
from the first-order characterization of convexity, we can say that the following will
be true,

F (x∗) ≥ F (xk) + ⟨ ∇F (xk), x∗ − xk ⟩

⇔ F (xk) − F (x∗) ≤ ⟨ ∇F (xk), xk − x∗ ⟩

⇒ E z1:k [F (xk) − F (x∗)] ≤ E z1:k [ ⟨∇F (xk), xk − x∗ ⟩ ].

(6)

Using the above inequality in the last line of Equation (5) we get the following,

E z1:k [F (xk) − F (x∗)] ≤ E[ ⟨gk, xk − x∗⟩ ]. (7)

Now, if we further combine the inequality result that we obtained above with the
final equation of 2 we get that,

E[F (xk) − F (x∗)] ≤
E[ ||xk − x∗||22 − ||xk+1 − x∗||22 ]

2η
+

η

2
E[ ||gk||22 ]. (8)

Summing up the inequality of (8) from k = 1 to K we get the following,

K∑
k=1

E[F (xk) − F (x∗)] ≤
E[ ||x1 − x∗||22]

2η
− E[ ||xK+1 − x∗||22 ]

2η
+

η

2

 K∑
k=1

E
[
∥gk∥22

]

=
||x1 − x∗||22

2η
− E[ ||xK+1 − x∗||22 ]

2η
+

η

2

 K∑
k=1

E
[
∥gk∥22

] (x1 is known)

≤ ||x1 − x∗||22
2η

+
η

2

 K∑
k=1

E
[
∥gk∥22

] (
Since, E[ ||xK+1 − x∗||22 ]

2η
≥ 0

)
.

(9)

Using the Linearity of Expectation on the LHS of the inequality (9) we get the
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following,

E

 K∑
k=1

(F (xk)− F (x∗) )

 ≤ ||x1 − x∗||22
2η

+
η

2

 K∑
k=1

E
[
∥gk∥22

] . (10)

Now, if we divide both sides of the above inequality by K, we finally obtain the
following guarantee inequation for the application of SGD to convex functions of the
form F (x) = Ez[f(x; z)] : Rd → R ,

1

K
E

 K∑
k=1

(F (xk)− F (x∗) )

 ≤ η

2K

 K∑
k=1

E
[
∥gk∥22

]+
∥x1 − x∗∥22

2ηK
. (11)

Corollary 1. Let us denote x̄K := 1
K

∑K
k=1 xk. Then,

E
[
F (x̄K)− F (x∗)

]
≤ 1

K
E

 K∑
k=1

(F (xk)− F (x∗) )

 . (12)

Proof. Jensen’s Inequality states the following: If g(·) : Rd → R is a convex function,
and D is any discrete distribution over x1, x2, ....., xn ∈ Rd. Then the following
inequality holds,

g

 n∑
i=1

pixi

 ≤ n∑
i=1

pi · g(xi), (13)

where pi ≥ 0, ∀i ∈ [n], and
∑

i∈[n] pi = 1 .

Therefore, knowing that F (x) = Ez[f(x; z)] : Rd → R is a convex function, and
considering D to be the uniform discrete distribution over x1, x2, x3, ....., xK (i.e.
pk =

1
K , ∀k ∈ [K]), we can write the following
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F

 1

K

K∑
k=1

xk

 ≤ 1

K

K∑
k=1

F (xk)

⇔ F

 1

K

K∑
k=1

xk

− F (x∗) ≤

 1

K

K∑
k=1

F (xk)

− F (x∗)

⇔ F (x̄K)− F (x∗) ≤
1

K

K∑
k=1

(F (xk)− F (x∗) )

Denoting x̄K :=
1

K

K∑
k=1

xk



⇒ E
[
F (x̄K)− F (x∗)

]
≤ 1

K
E

 K∑
k=1

(F (xk)− F (x∗) )

 .

(14)

Lemma 1. In addition, let us make another assumption, that the expectation of the
squared ℓ2-norm of stochastic gradient is bounded, i.e. E

[
||gk||22

]
≤ G2 . Then we

shall have,

E
[
F (x̄K)− F (x∗)

]
≤ η

2
G2 +

D2

2ηK
. (15)

(For a concrete understanding of the conditions under which this assumption shall
hold, refer to Lemma 2.6 in [7])

Proof. By taking into account the guarantee of the SGD algorithm (as provided by
Theorem 2 in (1)), and the inequality identity that is provided by Corollary 1 in
(12), we can write the following,

E
[
F (x̄K)− F (x∗)

]
≤ η

2K

 K∑
k=1

E
[
∥gk∥22

]+
∥x1 − x∗∥2

2ηK
. (16)

Under the assumption that E
[
||gk||22

]
≤ G2, and using the fact that the initial

distance is bounded, i.e., ∥x1−x∗∥ ≤ D, we can re-write the final inequality expression
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of (16) as follows,

E
[
F (x̄K)− F (x∗)

]
≤ η

2K

 K∑
k=1

E
[
∥gk∥22

]+
∥x1 − x∗∥2

2ηK

≤ η

2
G2 +

D2

2ηK
.

(17)

Remark 1: The inequality of (17), thus gives an upper-bound for the expectation
of the optimality gap, when the function F (·) is evaluated at the point formed by
average of the updates

(
x̄K = 1

K

∑K
k=1 xk

)
.

Remark 2: Knowing that the step-size η is always positive, the upper-bound expres-
sion can be thought of as a convex function, g(η) =

(
η
2
G2 + D2

2ηK

)
: R → R, since

the second-order derivative g”(η) = D2

η3K
is always positive. Furthermore, it can be

analytically determined that the minimum value of the upper-bound g(·) is DG√
K

, which
is obtained at η∗ = D

G
√
K

.

4 SGD for Non-Convex Functions:

Theorem 3. Assume that the variance of the stochastic gradient ∇f(x; z) is at most
σ2 for all x, i.e., Ez

[
∥∇f(x; z)−∇F (x)∥22

]
≤ σ2. Suppose F (·) is L-smooth. Then,

SGD with the step size η ≤ 1
L

has the following guarantee,

K∑
k=1

E
[
∥∇F (xk)∥22

]
≤ 2(F (x1)− F∗)

η
+ ηLσ2K.

Remark 1: If η = min

(
1
L
,

√
F (x1)−F∗

σ
√
LK

)
, then

K∑
k=1

E
[
∥∇F (xk)∥22

]
≤ 2

(
F (x1)− F∗

)
L+ 3σ

√(
F (x1)− F∗

)
LK. (18)
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Remark 2: Furthermore, with η = min

(
1
L
,

√
F (x1)−F∗

σ
√
LK

)
, if x̂ is selected uniformly

at random from x1, . . . , xK , then we have,

E
[
∥∇F (x̂)∥

]
≤

√
2
(
F (x1)− F∗

)
L

√
K

+

√
3σ
√(

F (x1)− F∗
)
L

K1/4
. (19)

5 Mini-batch SGD for Non-Convex Functions:

Objective: minx F (x), where F (x) := E[f(x; z)]

Below is a formal statement of the Mini-Batch SGD algorithm.

Algorithm 4 Mini-batch Stochastic Gradient Descent(Mini-batch SGD)
1: for k = 1 to K do
2: for i = 1 to B do
3: gk,i = ∇f(xk; z(k−1)B+i )

4: end for
5: gk = 1

B

∑B
i=1 gk,i

6: xk+1 = xk − ηgk
7: end for

Remark: The parameter B is called the batch size . When B=1, we have vanilla
SGD.

5.1 The variance is σ2

B

Lemma 2. Assume that the variance of the stochastic gradient ∇f(x; z) is at most
σ2 for all x, i.e., Ez

[
∥∇f(x; z)−∇F (x)∥22

]
≤ σ2. Then,

Ez

[
∥gk −∇F (xk)∥22

]
≤ σ2

B
(20)

Proof. Given that Ez

[
∥∇f(x; z)−∇F (x)∥22

]
≤ σ2 . From the mini-batch SGD algo-

rithm, as shown in 4, we know that,

gk =
1

B

B∑
i=1

gk,i =
1

B

B∑
i=1

∇f(xk; z(k−1)B+i ) (21)
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The above formulation shows that, in order to compute gk at each iteration step, the
random variable z is sampled B times.

Let us denote, zk, i := z(k−1)B + i . We can make the generic assumption that in an
iteration step k, each random variable zk,1 , zk,2 , ..., zk,B are independent of each other.

So, we have the following,

Ez

[
∥gk −∇F (xk)∥22

]
= Ez k,1:B


∥∥∥∥∥∥ 1B

B∑
i=1

(gk,i −∇F (xk))

∥∥∥∥∥∥
2

2

 (Using (21))

=
1

B2
Ez k,1:B


∥∥∥∥∥∥

B∑
i=1

(gk,i −∇F (xk))

∥∥∥∥∥∥
2

2



≤ 1

B2
Ez k,1:B


 B∑

i=1

∥∥gk,i −∇F (xk)
∥∥
2

2
 (By Triangular Inequality)

=
1

B2
Ez k,1:B


 B∑

i=1

∥∥∇f(xk; zk,i)−∇F (xk)
∥∥
2

2
 (From 4, gk,i = ∇f(xk; zk,i))

=
1

B2

B∑
i=1

Ez k,i

[∥∥∇f(xk; zk,i)−∇F (xk)
∥∥2
2

]

+
1

B2

B−1∑
i=1

∑
i<j≤B

2Ez k,i , z k,j

[ ∥∥∇f(xk; zk,i)−∇F (xk)
∥∥
2

∥∥∇f(xk; zk,j)−∇F (xk)
∥∥
2

]
(22)

Consider the second term on the right-hand side of inequality (22). The term
∥∥∇f(xk; zk,i)−∇F (xk))

∥∥
2

depends on zk,i, while the term
∥∥∇f(xk; zk,j)−∇F (xk))

∥∥
2

depends on zk,j. When
i ̸= j, since zk,i is independent of zk,j, it implies that

∥∥∇f(xk; zk,i)−∇F (xk))
∥∥
2

is
independent of

∥∥∇f(xk; zk,j)−∇F (xk))
∥∥
2

.
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Since covariance of independent terms is 0, therefore ∀i, j with i ̸= j, we can write
that,

Ez k,i , z k,j

[∥∥∇f(xk; zk,i)−∇F (xk))
∥∥
2

∥∥∇f(xk; zk,j)−∇F (xk))
∥∥
2

]
= 0.

Therefore, the final inequality expression of (22) becomes as follows,

Ez

[
∥gk −∇F (xk)∥22

]
≤ 1

B2

B∑
i=1

Ez k,i

[∥∥∇f(xk; zk,i)−∇F (xk))
∥∥2
2

]
. (23)

Now, incorporating our initial assumption that Ez

[
∥∇f(x; z)−∇F (x)∥22

]
≤ σ2 in

the above inequality we get,

Ez

[
∥gk −∇F (xk)∥22

]
≤ 1

B2

B∑
i=1

Ez k,i

[∥∥∇f(xk; zk,i)−∇F (xk))
∥∥2
2

]
≤ 1

B2
σ2B =

σ2

B
.

(24)

Thus, we have shown that: Ez

[
∥gk −∇F (xk)∥22

]
≤ σ2

B
.

5.2 Iteration complexity of Mini-Batch SGD
Recall Remark 2 of when SGD is applied to non-convex smooth functions (see 19):

with η = min

(
1
L
,

√
F (x1)−F∗

σ
√
LK

)
, if x̂ is selected uniformly at random from x1, . . . , xK ,

then we have,

E
[
∥∇F (x̂)∥

]
≤
√

2(F (x1)− F∗)L√
K

+

√
3σ(
√

F (x1)− F∗)L

K1/4
(25)

So, if we assume that the variance of the stochastic gradient ∇f(x; z) is at most σ2

and set η = min

(
1
L
,
√

F (x1)−F ∗(
σ√
B

)√
LK

)
, then we could obtain the following guarantee for

Mini-batch SGD by substituting σ ← σ√
B

in 25,

E
[
∥∇F (x̂)∥

]
≤
√

2(F (x1)− F∗)L√
K

+

√
3σ
√
(F (x1)− F∗)L

(BK)1/4
(26)
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5.3 Comparison between SGD and Mini-Batch SGD

Vanilla SGD Mini-batch SGD
Convergence Rate 1

K1/4
1

(BK)1/4

number of Stochastic Gradients per Iteration 1 B
total number of stochastic gradients over K K BK

Convergence Rate 1
(total # of sg)1/4

1
(total # of sg)1/4

Bibliographic notes
More information on Stochastic Optimization can be found in [6] and [5].

References
[1] G. Lan, The Complexity of Large-scale Convex Programming under a Linear

Optimization Oracle, arXiv.org, 2014, doi: 10.48550/arxiv.1309.5550.

[2] J.-K. Wang, J. Abernethy, and K. Y. Levy, No-regret dynamics in the Fenchel
game: a unified framework for algorithmic convex optimization, Mathematical
programming, vol. 205, no. 12, pp. 203268, 2024, doi: 10.1007/s10107-023-01976-
y.

[3] Elad. Hazan, Introduction to Online Convex Optimization, Second Edition., 1st
ed. Cambridge: MIT Press, 2022.

[4] C. W. Combettes and S. Pokutta, Complexity of linear minimization and projec-
tion on some sets, Operations research letters, vol. 49, no. 4, pp. 565571, 2021,
doi: 10.1016/j.orl.2021.06.005.

[5] A. Rakhlin, O. Shamir, and K. Sridharan, Making gradient descent op-
timal for strongly convex stochastic optimization, arXiv.org, 2012, doi:
10.48550/arXiv.1109.5647.

[6] John Duchi, Introductory Lectures on Stochastic Convex Optimization, Park
City Mathematics Institute, Graduate Summer School Lectures, 2016.

[7] Shai Shalev-Shwartz Online learning and online convex optimization, Foundations
and Trends® in Machine Learning, 2012.

14


	Review: Projected Gradient Descent and Frank-Wolfe Method
	Introduction to Stochastic Optimization
	Iteration Complexity of SGD:
	SGD for Non-Convex Functions:
	Mini-batch SGD for Non-Convex Functions:
	The variance is 2B
	Iteration complexity of Mini-Batch SGD
	Comparison between SGD and Mini-Batch SGD


