
ECE 273 Convex Optimization and Applications Instructor: Jun-Kun Wang
Scribe: Nikola Raicevic, Michael Tang, Ibrahim Kilinc April 18, 2024
Editor/TA: Marialena Sfyraki

Lecture 6: Projected Gradient Descent and Frank-Wolfe
Method

1 Preliminaries
Optimality Conditions of Constrained Convex Optimization

Theorem 1. Assume f is a convex function, then (saying that)

x∗ ∈ argmin
x∈C

f(x)

iff there exists a subgradient gx∗ such that for any y ∈ C

⟨gx∗ , y − x∗⟩ ≥ 0

Corollary: When C = Rd: the statement ⟨gx∗ , y − x∗⟩ ≥ 0, ∀y ∈ Rd is equivalent to
0 ∈ ∂f(x∗).

Theorem 2. Assume f is a convex function and differentiable, then (saying that)

x∗ ∈ argmin
x∈C

f(x) (1)

iff for any y ∈ C

⟨∇f(x∗), y − x∗⟩ ≥ 0 (2)

Minimum v.s. Infimum
The minimum value of a function needs to be attained. However, the minimum does
not necessarily exist, whereas, the infimum of a function is its largest lower bound,
which always exists.

1. Example 1: min
x∈R

exp(−x) vs. inf
x∈R

exp(−x) = 0

2. Example 2: min
x∈R

log(1 + exp(−x)) vs. inf
x∈R

log(1 + exp(−x)) = 0

1

Definition 1. (Gradient Dominant or Polyak-Lojasiewicz (PL) Condi-
tion): We say a function f : Rd → R satisfies the “Gradient Dominance” condition
if

||∇f(x)||22 ≥ 2µ

(
f(x)−min

x
f(x)

)
, for some µ > 0.

Example: f(x) = 1
2
x⊤Ax, where A ⪰ 0, is a convex function but not strongly

convex.

Remark: f satisfies the µ-PL condition with the constant µ = λi∗ , the smallest
positive eigenvalue of A.

Proof. Denote the eigen-decomposition of A =
∑d

i=1 λiuiu
⊤
i , where λi’s and ui’s are

eigenvalues and eigenvectors. As 0 = minx f(x) and ∇f(x) = Ax, it suffices to
establish the following inequality:

x⊤A⊤Ax ≥ λi∗x
⊤Ax ⇐⇒

d∑
i=1

λ2
i (x

⊤ui)
2 ≥ λi∗

d∑
i=1

λi(x
⊤ui)

2 (3)

Denote λ1 ≥ λ2 ≥ · · · ≥ λi∗ > λi∗+1 = · · · = 0. Then, the above is equivalent to

i∗∑
i=1

λ2
i (x

⊤ui)
2 ≥ λi∗

i∗∑
i=1

λi(x
⊤ui)

2, (4)

which is true since λi ≥ λi∗ for i ∈ [i∗], i.e. λi ≥ λi∗ for i ≤ i∗

Constrained optimization: A constrained optimization problem is an optimization
problem in which we aim to optimize a function f over a set C ⊂ Rd. It can be
represented in the following form:

min
x∈C

f(x)

2 Projected Gradient Descent (PGD)

2.1 PGD: Algorithm
Algorithm 1 is a formal statement of the PGD algorithm. In addition to GD, it has
a projection step after each GD calculation.

2

Figure 1: The illustration of the PGD algorithm

Algorithm 1 The steps of the PGD algorithm
1: for k = 1, 2, . . . do
2: xk+1 = ProjC

[
xk − η∇f(xk)

]
3: end for

The projection for the projection step is defined as finding the point in C with
the minimum Euclidean distance to a given point. The analytical expression for
projection is expressed as:

ProjC(y) := argmin
x∈C

∥y − x∥22, (5)

where ProjC(y) means given y find the projection of y onto set C.

2.2 GD and PGD
In this subsection, we introduce the convergence rate of GD and PGD for L-smooth
convex, and µ-strongly convex functions. The convergence rate of GD and PGD is
the same as seen in Table 1 and 2. The convergence rate of the L-smooth convex
functions is sublinear for the GD and PGD. The convergence rate of the L-smooth
and µ-strongly convex functions is linear for the GD and PGD.

ϵ-optimality gap: f(xk)−minx∈Rd f(x) ≤ ϵ

L-smooth convex O
(
L
k

)
L-smooth and µ-strongly convex O

(
exp

(
− µ

L
k
))

Table 1: GD: minx∈Rd f(x)

3

ϵ-optimality gap: f(xk)−minx∈C f(x) ≤ ϵ

L-smooth convex O
(
L
k

)
L-smooth and µ-strongly convex O

(
exp

(
− µ

L
k
))

Table 2: PGD for minx∈C f(x)

2.3 When to choose PGD?
Finding the projection is another optimization problem, i.e,

ProjC(y) := argmin
x∈C

∥y − x∥22

min
x∈C

∥x− y∥22

as shown in the PGD algorithm in Algorithm 1. Therefore, the PGD should be
selected over GD when the projection step has a closed-form solution or there exists
an efficient/specialized algorithm to solve projection.

2.4 How to implement the projection: argminx∈C ∥y − x∥22
Example 1: (with closed-form solution)
Let C := {x ∈ Rd : ||x||2 ≤ 1}. Then,

ProjC(y) =

 y
∥y∥2

, if y ̸∈ C

y, otherwise

O

y

projC(y)

C

Example 2: (with closed-form solution)
Let C := {x ∈ Rd : ||x||∞ ≤ 1}, with ||x||∞ := maxi |x[i]|.
Then, ∀i ∈ [d],−1 ≤ x[i] ≤ 1

ProjC(y)[i] =


1, if y[i] > 1

−1, if y[i] < −1

y[i], otherwise

4

−1 1
y[i] y[j]

ProjC(y)[i] ProjC(y)[j]

Example 3: (without closed-form solution)
Let C := {x ∈ Rd : ||x||1 ≤ 1}.
Denote (z)+

∆
= max{0, z}.

Then, we have the following Characterization of ProjC(y) when y /∈ C

ProjC(y)[i]
△
= x̂[i] = sign(y[i]) (|y[i]| − λ)+,

where λ is the solution to
∑d

i=1(|y[i]| − λ)+ = 1.

2.5 Optimality Gap of PGD
Recall the update step of PGD: xk+1 = ProjC

[
xk − η∇f(xk)

]
.

Theorem 3. Let f(·) be L-smooth and µ-strongly convex. Denote x∗ := argminx∈C f(x).
With step size η = 1

L
, PGD has

∥xK+1 − x∗∥22 ≤
(
1− µ

L

)K

∥x1 − x∗∥22. (6)

Proof. By L-smoothness:

f(xk+1)− f(xk) ≤ ⟨∇f(xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22 (7)

and by µ-strong convexity:

f(xk)− f(x∗) ≤ ⟨∇f(xk),xk − x∗⟩ −
µ

2
∥xk − x∗∥22 (8)

We introduce the following lemma, which can be proven by adding (7) and (8):

Lemma 1. If f(·) is L-smooth and µ−strongly convex, the following holds:

f(xk+1)− f(x∗) ≤ ⟨∇f(xk),xk+1 − x∗⟩+
L

2
∥xk+1 − xk∥22 −

µ

2
∥xk − x∗∥22 (9)

We define
xk+1 = argmin

x∈C
∥x−

(
xk − η∇f(xk)

)
∥22

5

By the optimality condition of xk+1, we know

⟨xk+1 −
(
xk − η∇f(xk)

)
, z− xk+1⟩ ≥ 0, ∀z ∈ C. (10)

By setting z = x∗, we can rearrange (10) into

⟨∇f(xk),xk+1 − x∗⟩ ≤
1

η
⟨xk+1 − xk,x∗ − xk+1⟩. (11)

We can plug the estimate (11) into the Lemma 1 to obtain

f(xk+1)− f(x∗) ≤
1

η
⟨xk+1 − xk,x∗ − xk+1⟩+

L

2
∥xk+1 − xk∥22 −

µ

2
∥xk − x∗∥22,

which can be rearranged into

−1

η
⟨xk+1 − xk,x∗ − xk+1⟩ ≤ f(x∗)− f(xk+1) +

L

2
∥xk+1 − xk∥22 −

µ

2
∥xk − x∗∥22

≤ L

2
∥xk+1 − xk∥22 −

µ

2
∥xk − x∗∥22, (12)

where the bottom inequality follows from the fact that f(x∗) − f(xk+1) ≤ 0. Then
we have

∥xk+1 − x∗∥22 = ∥xk − (xk − xk+1)− x∗∥22
= ∥xk − x∗∥22 − 2⟨xk+1 − xk,x∗ − xk⟩+ ∥xk − xk+1∥22
= ∥xk − x∗∥22 − 2⟨xk+1 − xk,x∗ − xk+1 + xk+1 − xk⟩+ ∥xk − xk+1∥22
≤ ∥xk − x∗∥22 + (Lη − 1)∥xk+1 − xk∥2 − ηµ∥xk − x∗∥22 (13)
≤ (1− ηµ) ∥xk − x∗∥22. (14)

where (13) follows from (12) and (14) follows from the fact that η ≤ 1
L

. By recursively
applying this estimate from k = K to k = 1, we complete the proof.

3 Frank-Wolfe Method
The Frank-Wolfe algorithm is an iterative method to solve constrained optimization
problems. More formally, it can be stated as follows:

Algorithm 2 The steps of Frank-Wolfe method
1: Initialize x1 ∈ C (convex set)
2: for k = 1, 2, . . . do
3: vk = argminv∈C⟨v,∇f(xk)⟩ (linear optimization)
4: xk+1 = (1− ηk)xk + ηkvk, where ηk ∈ [0, 1].
5: end for

6

Step 4 is called the convex averaging step. Note that C being convex guarantees
xk ∈ C for all k values. To see why, we already know for the base case we initialize
x1 ∈ C. Then, if we suppose xk∗ ∈ C we know vk∗ ∈ C by how we define vk∗ in
algorithm 3. Since C is convex, we also know xk∗+1 = (1− ηk∗)xk∗ + ηk∗vk∗ ∈ C since
ηk∗ ∈ [0, 1]. By induction, we conclude xk ∈ C, ∀k.

Geometric Illustration
Consider the probability simplex in R2 defined by ∆2 = {v ∈ R2 : v[1],v[2] ≥
0,v[1] + v[2] ≤ 1}. On the R2 plane, this looks like a triangle with vertices on

(0, 0), (1, 0), (0, 1). Suppose ∇f(xk) =

[
1

−1

]
∈ R2 , then it can be verified that

vk = argminv∈C

⟨
v,

[
1

−1

]⟩
=

[
0

1

]
∀k. This makes sense intuitively if we interpret

it in a game-theoretic context, where we suppose v[1] and v[2] represent how one
allocates a total of “1” resources. If the person wants to minimize a certain linear
objective function, they should put all their resources in the direction that decreases
this objective function the most significantly. In this specific example, that would be

the v[2] direction, since the objective function in this case would be

⟨
v,

[
1

−1

]⟩
=

v[1]− v[2]. Hence, each step of the Frank-Wolfe method essentially converges to the
(0, 1) vertex while also remaining in ∆2. Meanwhile, if one were to implement the
standard gradient descent algorithm on this problem, the point would keep moving

in the ∇f =

[
1

−1

]
direction without bound.

Theorem 4 (Convergence of the Frank-Wolfe Method). Assume f(·) is a L-smooth
convex function. Denote D := maxx,y∈C ∥x − y∥2 as the diameter of the set C. Let
ηk = min{1, 2

k
} ∈ [0, 1]. Then, Frank-Wolfe has:

f(xK)− f(x∗) ≤
2LD2

K
.

Proof. First, recall that by L-smoothness we have:

f(xK+1) ≤ f(xK) + ⟨∇f(xK),xK+1 − xK⟩+
L

2
∥xK+1 − xK∥2

= f(xK) + ηK⟨∇f(xK),vK − xK⟩+
Lη2K
2

∥vK − xK∥2 (15)

≤ f(xK) + ηK⟨∇f(xK),vK − xK⟩+
Lη2K
2

D2, (16)

7

where (15) and (16) follow from the fact that the update is xK+1−xK = ηK(vK−xK)

and D ≥ maxx,v∈C∥x − v∥2. Then pick x∗ ∈ argminx∈C f(x). By recalling vk =

argminv∈C⟨v,∇f(xk)⟩, we know

⟨∇f(xK),vK⟩ ≤ ⟨∇f(xK), z⟩ ∀z ∈ C.

By setting z = x∗, this is implies

⟨∇f(xK),vK − xK⟩ ≤ ⟨∇f(xK),x∗ − xK⟩. (17)

Furthermore, by the convexity of f we know

f(x∗) ≥ f(xK) + ⟨∇f(xK),x∗ − xK⟩. (18)

We can use (18) in (17), then plug this estimate into (16) and rearrange to obtain

f(xK+1)− f(x∗) ≤ (1− ηK)(f(xK)− f(x∗)) +
LD2η2K

2
. (19)

Before we proceed, we state the following lemma which can be proven via induction:

Lemma 2. Let {δk} be a sequence that satisfies the recurrence

δk+1 ≤ δk(1− ηk) + η2kc0.

Then taking η = min{1, 2
k
}, we get

δk ≤
4c0
k

.

For the proof of this lemma, see Lemma 7.2 in Chapter 7 of [Hazan (2016)].
Then, by setting δK = f(xK) − f(x∗) and c0 = LD2

2
, we can apply Lemma 2 to (19)

and obtain
f(xK)− f(x∗) ≤

2LD2

K
,

which concludes the proof.

3.1 Application of Frank-Wolfe: Matrix Completion
First, we introduce the nuclear norm of a matrix that is useful to explain the matrix
completion example of the Frank-Wolfe method.

Nuclear Norm: The nuclear norm of a matrix A ∈ Rm×n denoted as ∥A∥σ is defined
as the sum of all singular values of the matrix, i.e.

∥A∥σ =
l∑

i=1

σi(A),

8

where l = min(m,n). By the singular value decomposition, if A = UΣV T , then

Σ =


σ1(A)

σ2(A)
. . .

 .

Matrix completion
The matrix completion problem is illustrated through a realistic example. Let’s imag-
ine a scenario with a fixed number of people and different fruits. Each person has
a different rating or preference for a fruit. Figure 2 shows a matrix that represents
the preference of 5 people for 7 different fruits. Let M denote the matrix in Figure 2.
Imagine that some entries of the preference matrix M are collected as shown in black
boxes in Figure 2. Let’s denote the partially collected or given matrix as PO(M). The
preference of i-th person for j-th fruit PO(M)i,j is given as

PO(M)i,j =

Mi,j if (i, j) is observed
0 otherwise.

Mathematically, we are given PO(M). The matrix completion problem is to complete
unknown entries of PO(M). The matrix completion problem is formulated as

min
X∈Rm×n:∥X∥σ≤r

f(X), where f(X) :=
1

2
∥X − PO(M)∥22. (20)

The constrained optimization problem is to solve a linear equation over the set of
observed entries with the aim of keeping the nuclear norm of the completed matrix X

less than r. This constraint makes sure that X does not overfit the observed values.
The matrix completion problem is to find the minimizer of Euclidian distance from
PO(M) with the nuclear norm less than r.

Figure 2: Fruit preference matrix of 5 users for 7 different fruits.

9

The update of Frank-Wolfe
Taking the gradient of the objective function f(X) in (20) yields to

∇f(X) = X − PO(M) ∈ Rm×n.

Then, the linear optimization step becomes

vk = argmin
∥v∥σ≤r

⟨∇f(Xk),v⟩. (21)

Let’s denote −∇f(X) = UΣW⊤ the singular value decomposition, where U ∈ Rm×l,
Σ ∈ Rl×l, and W ∈ Rn×l and l = min(m,n). The solution to (21) becomes

vk = ru1w
⊤
1 , (22)

where u1 ∈ Rm and w1 ∈ Rn is the top left and right singular vector. The complexity
to calculate vk is in the order of Õ(m × n) since only the top left, right singular
vectors and the top singular value are calculated.

We introduce the definition of a nuclear-norm ball expression to sketch out the
steps to provide reasoning in the result (22). A nuclear-norm ball is defined as

{Y ∈ Rm×n : ∥Y ∥σ ≤ r} = r ·conv{uw⊤ : u ∈ Rm,w ∈ Rn, ∥u∥2 = ∥w∥2 = 1}. (23)

The linear oracle outputs

argmin
V ∈Rm×n:∥V ∥σ≤r

⟨V, Y ⟩ = r · argmax
u∈Rm,w∈Rn:∥u∥2=∥w∥2=1

⟨uw⊤,−Y ⟩

= r · argmax
u∈Rm,w∈Rn:∥u∥2=∥w∥2=1

tr
((

uw⊤
)⊤

(−Y)

)
= r · argmax

u∈Rm,w∈Rn:∥u∥2=∥w∥2=1

u⊤(−Y)w

= r · u1w
⊤
1 .

The update of PGD
Let’s denote (z)+

∆
= max{0, z} and the singular-value decomposition of Y =

∑min(m,n)
i=1 σi uiwi ∈

Rm×n. Then, the projection of Y onto a nuclear norm-ball with r is defined as

Proj∥·∥σ≤r[Y] =

min(m,n)∑
i=1

(σi − λ)+uiwi,

where λ is the solution to
∑min(m,n)

i=1 (σi − λ)+ = r. Since all the singular values
min(m,n) are calculated, the complexity of the projection step in the PGD is in the

10

order of Õ(m× n× min(m,n)).

Remark: The complexity of each update in the Frank-Wolfe is Õ(m × n) which is
much less than the complexity of each update in the PGD, Õ(m× n× min(m,n))

Comparison to the projection on a l1 norm ball
Example: (without closed-form solution)
Let C := {x ∈ Rd : ||x||1 ≤ 1}.
Denote (z)+

∆
= max{0, z}.

Then, we have for the Characterization of ProjC(y) when y /∈ C

x̂[i] = sign(y[i]) (|y[i]| − λ)+,

where λ is the solution to
∑d

i=1(|y[i]| − λ)+ = 1.

(Frank-Wolfe) Faster rate than O(1/K) when f(·) is smooth and strongly
convex?

• Negative example [Lan (2014)]:

If C is a probability simplex, i.e., C := {x ∈ Rd :
∑d

i=1 x[i] = 1, x[i] ≥ 0}.

K = Ω

(
max

(
L

ϵ
,
d

2

))
.

• Positive example [Wang (2023)]:

When C is a µ-strongly convex set w.r.t. a norm ∥ · ∥, i.e., x, z ∈ C implies
that a ball centered at αx+ (1− α)z with a radius in α(1− α)µ

2
∥x− z∥2 is in

C, where α ∈ [0, 1].

Example: lp norm with p ∈ (1, 2].

Bibliographic notes
For more examples and discussions, see [Combettes (2021)] and Chapter 7 of [Hazan (2016)].

11

References
[Wang (2023)] Jun-Kun Wang, Jacob Abernethy, Kfir Y Levy. No-regret dynamics

in the Fenchel game: A unified framework for algorithmic convex optimization.
Mathematical Programming, 2023

[Hazan (2016)] Elad Hazan. Introduction to Online Convex Optimization. 2016.

[Combettes (2021)] Cyrille W. Combettes, Sebastian Pokutta. Complexity of Linear
Minimization and Projection on Some Sets. 2021.

[Lan (2014)] Guanghui Lan. The Complexity of Large-scale Convex Programming
under a Linear Optimization Oracle. 2014.

12

	Preliminaries
	Projected Gradient Descent (PGD)
	PGD: Algorithm
	GD and PGD
	When to choose PGD?
	How to implement the projection: xC y- x22
	Optimality Gap of PGD

	Frank-Wolfe Method
	Application of Frank-Wolfe: Matrix Completion

