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Lecture 6: Projected Gradient Descent and Frank-Wolfe
Method

1 Preliminaries

Optimality Conditions of Constrained Convex Optimization

Theorem 1. Assume f is a convex function, then (saying that)

x, € argmin f(z)
zeC

iff there exists a subgradient g,, such that for any y € C

(Joury —4) 20

Corollary: When C' = R% the statement (g,,,y — z.) > 0,Vy € R? is equivalent to
0 € df(xy).

Theorem 2. Assume f is a convez function and differentiable, then (saying that)

x, € argmin f(z) (1)
zeC
iff for anyy € C
(Vf(2),y—2) 20 (2)

Minimum v.s. Infimum

The minimum value of a function needs to be attained. However, the minimum does
not necessarily exist, whereas, the infimum of a function is its largest lower bound,
which always exists.

1. Example 1: min exp(—x) vs. 916161]% exp(—z) =0

2. Example 2: mi{g log(1+ exp(—z)) vs. in& log(1+ exp(—x)) =0
Te s



Definition 1. (Gradient Dominant or Polyak-Lojasiewicz (PL) Condi-
tion): We say a function f: R? — R satisfies the “Gradient Dominance” condition

i
V70918 > 20 (160 min ), for some s>

Example: f(x) = ix"Ax, where A = 0, is a convex function but not strongly
convex.

Remark: f satisfies the p-PL condition with the constant p = ;. , the smallest
positive eigenvalue of A.

Proof. Denote the eigen-decomposition of A = Zle )\iuiuj, where )\;’s and u;’s are
eigenvalues and eigenvectors. As 0 = miny f(x) and Vf(x) = Ax, it suffices to
establish the following inequality:

d d
x ATAx > )\, x' Ax Z )\f(XTui)Q > A, Z /\i(XTui)Q (3)
i=1

=1

Denote \y > Ao > --- > \;, > \;,o1 = --- = 0. Then, the above is equivalent to
DN W) =AY N w)?, (4)
i=1 i=1

which is true since \; > \;, for i € [i,], i.e. A\; > A\, for i <, O

Constrained optimization: A constrained optimization problem is an optimization
problem in which we aim to optimize a function f over a set C' C R% It can be
represented in the following form:

min f(x)

2 Projected Gradient Descent (PGD)

2.1 PGD: Algorithm

Algorithm [ is a formal statement of the PGD algorithm. In addition to GD, it has
a projection step after each GD calculation.



Figure 1: The illustration of the PGD algorithm

Algorithm 1 The steps of the PGD algorithm
1: for k=1,2,... do
2:  Xpq1 = Projo [Xk — an(xk)]
3: end for

The projection for the projection step is defined as finding the point in C' with
the minimum Euclidean distance to a given point. The analytical expression for
projection is expressed as:

Projo(y) := argmin |y —x|f3, (5)

where Proj.(y) means given y find the projection of y onto set C.

2.2 GD and PGD

In this subsection, we introduce the convergence rate of GD and PGD for L-smooth
convex, and pu-strongly convex functions. The convergence rate of GD and PGD is
the same as seen in Table M and B. The convergence rate of the L-smooth convex
functions is sublinear for the GD and PGD. The convergence rate of the L-smooth
and p-strongly convex functions is linear for the GD and PGD.

e-optimality gap: f(xg) — mingepa f(x) <€
L-smooth convex O (%)
L-smooth and p-strongly convex | O <exp (—%k))

Table 1: GD: minycpa f(x)



e-optimality gap: f(xy) — mingec f(x)
L-smooth convex O (

L-smooth and p-strongly convex | O (exp (—%k))

Table 2: PGD for mingec f(x)

2.3 When to choose PGD?

Finding the projection is another optimization problem, i.e,
Projo(y) := argmin ||y — x|f3
xeC

- o2
min [[x — |
as shown in the PGD algorithm in Algorithm m. Therefore, the PGD should be

selected over GD when the projection step has a closed-form solution or there exists
an efficient /specialized algorithm to solve projection.

2.4 How to implement the projection: arg minycc ||y — x||3

Example 1: (with closed-form solution)
Let C := {x € R?: ||x||s < 1}. Then,
= ifygC

Proj.(y) = llyll2? ‘
Y, otherwise

Example 2: (with closed-form solution)
Let C = {x € R : ||x||0o < 1}, with ||x]]o := max; |[x[d]].
Then, Vi € [d], -1 < z[i] <1

1, ifyli] > 1
Projo(y)lil = ¢ —1, ifyli] < -1

yli], otherwise



Projo(y)[i] Projo(y)[J]

Example 3: (without closed-form solution)

Let C:={x e R?: ||x||; < 1}.
Denote (z)+ 2 max{0,z}.
Then, we have the following Characterization of Proj.(y) wheny ¢ C

2

Projq(y)li] = x[i] = sign(y[i]) ([y[d]] — A)+,

where A is the solution to Z?zlﬂy[i” — Ay =1

2.5 Optimality Gap of PGD
Recall the update step of PGD: xj11 = Proj¢ [xx — 7V f(xx)].

Theorem 3. Let f(-) be L-smooth and p-strongly convezr. Denote x, := arg mingec f ().
With step size n = +, PGD has

1
L’

K
1
s = x B < (1= %) s = B ©)

Proof. By L-smoothness:

Fxin) = FOx) < (V700 %1 = 6) + 5 in — @
and by p-strong convexity:
fxi) = f(x) SAVF(RR), Xk — X0) = ngk - %3 (8)

We introduce the following lemma, which can be proven by adding (@) and (8):
Lemma 1. If f(-) is L-smooth and u—strongly convex, the following holds:
L 2 M 2
Frr) = f(x) S (VFR), Xepr = %) + S xeer = xulla = Sllxe —xflz - (9)

We define

Xj1 = argmin ||x — (xk =0V f(xx)) |3



By the optimality condition of x4, we know

(X1 — (X;c — an(xk)) ,Z— Xpy1) >0, VzeC. (10)
By setting z = x*, we can rearrange () into
1
(Vf(x1), Xp41 — %) < 5<Xk+1 — Xy X = Xp1)- (11)

We can plug the estimate () into the Lemma 0 to obtain

) = F0) < L0k =% = Xer) + Flboers = el — Slbxe —x.J
which can be rearranged into

s = = Xa) < Sk = ) + e = 3l 5~

L 7
< 5 [ —x|l5 — §||Xk—x*||§, (12)

where the bottom inequality follows from the fact that f(x.) — f(xx+1) < 0. Then
we have

%1 — x: 13 =[xk — (%% — Xpt1) — %[5
= [|xk — X3 — 2(Xp1 — Xpy Xo — Xp) + || X6 — X1 (|3

=[xk = X5 = 2(Xp41 = X, Xe — Xy + Xpp1 — Xp) + X5 — Xppa]f3

< e = %13+ (Lo = Dllxper — xll* = mullx — %13 (13)
< (1 =) I3 — x5 (14)
where (I3) follows from (I2) and (I4) follows from the fact that n < 1. By recursively
applying this estimate from k = K to k = 1, we complete the proof. O

3 Frank-Wolfe Method

The Frank-Wolfe algorithm is an iterative method to solve constrained optimization
problems. More formally, it can be stated as follows:

Algorithm 2 The steps of Frank-Wolfe method

1: Initialize x; € C' (convex set)

2: for k=1,2,... do

3: v = argminyec(v, V(X)) (linear optimization)
4 Xpp = (1 — )Xk + Vi, where n € [0, 1].

5. end for




Step 4 is called the conver averaging step. Note that C' being convex guarantees
X € C for all k values. To see why, we already know for the base case we initialize
x; € C. Then, if we suppose x;, € C we know v;, € C' by how we define vy, in
algorithm B. Since C'is convex, we also know xy, 11 = (1 — ng, )Xk, + Mk, Vi, € C since
Mk, € [0,1]. By induction, we conclude x;, € C, Vk.

Geometric Illustration
Consider the probability simplex in R? defined by Ay = {v € R? : v[1],v[2] >
0,v[1] + v[2] < 1}. On the R? plane, this looks like a triangle with vertices on

1
(0,0),(1,0),(0,1). Suppose Vf(xx) = 1 € R? | then it can be verified that

1
Vi = arg Minyeco <V, [ 1] > = [(1]] VEk. This makes sense intuitively if we interpret

it in a game-theoretic context, where we suppose v[1] and v[2] represent how one
allocates a total of “1” resources. If the person wants to minimize a certain linear
objective function, they should put all their resources in the direction that decreases
this objective function the most significantly. In this specific example, that would be

1
the v[2] direction, since the objective function in this case would be ( v, 1] > =

v[1] — v[2]. Hence, each step of the Frank-Wolfe method essentially converges to the
(0,1) vertex while also remaining in Ay. Meanwhile, if one were to implement the
standard gradient descent algorithm on this problem, the point would keep moving

in the Vf = [ L ] direction without bound.

Theorem 4 (Convergence of the Frank-Wolfe Method). Assume f(-) is a L-smooth
convex function. Denote D := maxxyec ||x — y||2 as the diameter of the set C. Let
ne = min{1, 2} € [0,1]. Then, Frank-Wolfe has:

2L D?

Flxi) = fox1) <

Proof. First, recall that by L-smoothness we have:

Fxicer) < Jxa0) + (V7 6x10) % = ) + 5 Ixaess = x

L%

= (i) +mae(V f (%), vie = %) + =5 [Vie = x| (15)
2
< S0ck) + (V£ (xs), Vi — )+ 2K 2 (16)



where ([03) and (I8) follow from the fact that the update is xx 11 —Xx = Nx (VK —XK)
and D > maxyyec|x — v||>. Then pick x, € argminyec f(x). By recalling v, =
arg minyec (v, V f(xx)), we know

(Vf(xk),vi) <(Vf(xg),z) VzeC.
By setting z = x,, this is implies
(Vf(xk), v = xk) < (Vf(xK), X — Xk). (17)

Furthermore, by the convexity of f we know

f(x) = f(xk) + (Vf(Xk), X = Xk). (18)
We can use (I3) in (I7), then plug this estimate into (IB) and rearrange to obtain
2,2
Flxrcn) = F0x) < (1= i) (o) — F(.)) + 208 (19)

Before we proceed, we state the following lemma which can be proven via induction:

Lemma 2. Let {0y} be a sequence that satisfies the recurrence

Okt < 0k(L — mi) + micco.

Then taking n = min{1, 2}, we get

6. < 0.
F=Tk

For the proof of this lemma, see Lemma 7.2 in Chapter 7 of [Hazan (2016}].
Then, by setting dx = f(xx) — f(x«) and ¢y = LTDQ, we can apply Lemma B to (I9)

and obtain oI D2
Floxi) = fx.) <

which concludes the proof. O]

3.1 Application of Frank-Wolfe: Matrix Completion

First, we introduce the nuclear norm of a matrix that is useful to explain the matrix
completion example of the Frank-Wolfe method.

Nuclear Norm: The nuclear norm of a matrix A € R™*" denoted as ||A||, is defined
as the sum of all singular values of the matrix, i.e.

l

1Al = 3 i A),

=1

8



where [ = min(m, n). By the singular value decomposition, if A = UXVT, then

a1(A)
Y= oa(A)

Matrix completion

The matrix completion problem is illustrated through a realistic example. Let’s imag-
ine a scenario with a fixed number of people and different fruits. Each person has
a different rating or preference for a fruit. Figure B shows a matrix that represents
the preference of 5 people for 7 different fruits. Let M denote the matrix in Figure B.
Imagine that some entries of the preference matrix M are collected as shown in black
boxes in Figure 2. Let’s denote the partially collected or given matrix as Po(M). The
preference of i-th person for j-th fruit Po(M); ; is given as

Po(M),; M, ; if (i,7) is observed
oV 0 otherwise.

Mathematically, we are given Pp(M). The matrix completion problem is to complete
unknown entries of Po(M). The matrix completion problem is formulated as

min  f(X), where f(X) = %HX — Po(M)I2 (20)

XeRm<m||X o <r

The constrained optimization problem is to solve a linear equation over the set of
observed entries with the aim of keeping the nuclear norm of the completed matrix X
less than r. This constraint makes sure that X does not overfit the observed values.
The matrix completion problem is to find the minimizer of Euclidian distance from
Po(M) with the nuclear norm less than r.
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Figure 2: Fruit preference matrix of 5 users for 7 different fruits.



The update of Frank-Wolfe
Taking the gradient of the objective function f(X) in (20) yields to

V(X)=X—Po(M) e R™™".
Then, the linear optimization step becomes

v = argmin (V f(Xy), v). (21)

Ivilo<r

Let’s denote —V f(X) = UXW T the singular value decomposition, where U € R™*!,
¥ € R* and W € R™! and [ = min(m, n). The solution to (2I) becomes

Vi = 'r’ulwlT, (22)

where u; € R™ and w; € R” is the top left and right singular vector. The complexity
to calculate vy, is in the order of O(m x n) since only the top left, right singular
vectors and the top singular value are calculated.

We introduce the definition of a nuclear-norm ball expression to sketch out the
steps to provide reasoning in the result (22). A nuclear-norm ball is defined as

{Y eR™": ||Y]l, <7} =r-conv{uw' :u € R™ wcR" ||[ull, = ||w]2=1}. (23)
The linear oracle outputs

argmin  (VY) =r- arg max (uw ', —-Y)
VeRmXn| V], <r uER™ wERT: ulls=|wll2=1

g ((aw) (1)

ueR™, weR™ [[uf[2=|lwl|2=1

=r- arg max u' (-Y)w
ueR™ weR™[[uf[2=|lwll2=1
=T- 111W1r.
The update of PGD
Let’s denote (z),. = max{0, z} and the singular-value decomposition of ¥ = Sominmn) o ouw, €

R™*™_ Then, the projection of Y onto a nuclear norm-ball with r is defined as

min(m,n)

Projy., <. [Y] = Z (07 = A)pwiw;,

i=1

where A is the solution to z;n:irf(mm(ai — M)y = 7. Since all the singular values
min(m, n) are calculated, the complexity of the projection step in the PGD is in the

10



order of O(m x n x min(m,n)).

Remark: The complexity of each update in the Frank-Wolfe is O(m x n) which is
much less than the complexity of each update in the PGD, O(m x n x min(m,n))

Comparison to the projection on a /; norm ball
Example: (without closed-form solution)

Let C:={x e R?: ||x||; < 1}.

Denote (z) 2 max{0,z}.

Then, we have for the Characterization of Proj.(y) wheny ¢ C

x[i] = sign(y[il) (Iyld]] = A)+,

where ) is the solution to Z?:1(|y[i]| — Ay =1

(Frank-Wolfe) Faster rate than O(1/K) when f(-) is smooth and strongly
convex”?

« Negative example [Lan (2014)]:

If C is a probability simplex, i.e., C := {x € R?: Zle x[i] = 1, z[i] > 0}.

o)

« Positive example [Wang (2023)]:

When C' is a p-strongly convex set w.r.t. a norm || - ||, i.e., z,z € C implies
that a ball centered at ax 4 (1 — o)z with a radius in a(1 — «)4|jz — z||* is in
C, where « € [0, 1].

Example: [, norm with p € (1,2].

Bibliographic notes

For more examples and discussions, see [Combettes (2021]] and Chapter 7 of [Hazan (2016)].
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