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1 Subgradients and Subdifferentials
Definition 1. (Subgradient) For a function f(·), we say gx is a subgradient of f(·)
at x ∈ dom f , if for all y

f(y) ≥ f(x) + ⟨gx,y − x⟩

Fact 1: If f(·) is convex, a subgradient at any x ∈ dom f exists.
Fact 2: When f is convex and differentiable, gx = ∇f(x).

Example: f(x) = |x|. Letting g0 be the subgradient at x = 0. we have g0 ∈ [−1, 1].

Figure 1: Example Subgradients for f(x) = |x|.

Definition 2. (Subdifferential) The subdiffenential at a point x ∈ dom f is the set
of subgradient at x ∈ dom f :

∂f(x) := {gx : f(y) ≥ f(x) + ⟨gx,y − x⟩, for all y}

Properties of subdifferential ∂f(x):

• When f(·) is convex, ∂f(x) is nonempty.
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• ∂f(x) is closed and convex. Informally, a closed set is one with a boundary. For
example, [0, 1] is a closed set but (0,1) is not.

• When f is convex and differentiable, ∂f(x) = {∇f(x)}, i.e., has unique element.

Proof. (Subdifferential is a convex set)

∂f(x) := {gx : f(y) ≥ f(x) + ⟨gx,y − x⟩, for all y}

= ∩y{gx : f(y) ≥ f(x) + ⟨gx,y − x⟩}.

Because it is the intersection of sets of values gx that satisfy the inequality for a given
y, the subdifferential set can be represented as an intersection of half spaces. In other
words, the intersection gives us values gx that satisfy the inequality for all values y.
We know an intersection of half spaces is convex, so the subdifferential is a convex
set.

2 Convex Sets
Definition 3. (Convex Sets): A set C ⊆ Rd is called convex if for any x,y ∈ C

and any α ∈ [0, 1], we have

αx+ (1− α)y ∈ C.

This is to say that the for any x,y ∈ C all convex combinations of these two points
are within the set. Geometrically we can visualize this as a line connecting the two
points, for any points in C. If all points along this line are within the set C then the
set is considered to be convex.

Figure 2: Examples of Convex Set (Left) vs Non-Convex Set (Right)

2



2.1 Examples of Convex Sets
Example 1: The vector space Rd.

Vector spaces are closed under vector addition and scalar multiplication. Because of
this, the convex combination of two vectors is still a vector in Rd.

Example 2: Hyper-planes

{x ∈ Rd : ⟨x, a⟩ = c}, a ∈ Rd, c ∈ R.

From the first example, we know every convex combination of x is a vector in Rd. We

will show a convex combination of elements in the hyper-plane set is also in that set.
Consider two elements x, y such that ⟨x, a⟩ = c and ⟨y, a⟩ = c

⟨αx+ (1− α)y⟩
= ⟨αx, a⟩+ ⟨y, a⟩ − ⟨αy, a⟩
= αc+ c− αc

= c

The above condition for a convex combination of elements is still satisfied and are in
the hyper-plane set, thus hyper-planes are considered convex sets.

Example 3: Half-spaces

{x ∈ Rd : ⟨x, a⟩ ≤ c}, a ∈ Rd, c ∈ R

From the first example, we know every convex combination of x is a vector in Rd. We
will show a convex combination of elements in the hyper-plane set is also in that set.
Consider two elements x, y such that ⟨x, a⟩ ≤ c and ⟨y, a⟩ ≤ c

⟨αx+ (1− α)y⟩
= ⟨αx, a⟩+ ⟨y, a⟩ − ⟨αy, a⟩
≤ αc+ c− αc

≤ c

The above condition for a convex combination of elements is still satisfied and are in
the half space, thus half spaces are considered convex sets.

Example 4: A norm ball with a radius r ≥ 0

{x ∈ Rd : ∥x∥ ≤ r}.
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Applying the triangular inequality:

||αx+ (1− α)y|| ≤ α||x||+ (1− α)||y||
≤ αr + (1− α)r

≤ r

Thus the convex combination of x,y is also in the norm ball making this a convex set.

Example 5: (Convex Hull) A convex hull of a set C, denoted as conv C, is the set
of all convex combinations of the points in C.

convC :=

α1x1 + α2x2 + · · ·+ αnxn| each xi ∈ C, αi ≥ 0,
∑
i

αi = 1

 .

Figure 3: Example Convex Hulls

Note: The convex hull of any (non-convex) set is a convex set, like shown in Figure
3.

Fact: Intersection preserves the convexity. If C1 and C2 are convex sets, then so is
C1 ∩ C2. Let

x ∈ C1 ∩ C2,

y ∈ C1 ∩ C2,

where C1 ∩ C2 ⊆ C1 and C1 ∩ C2 ⊆ C2. Then,

αx+ (1− α)y ∈ C1,

αx+ (1− α)y ∈ C2.
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Therefore,

αx+ (1− α)y ∈ C1 ∩ C2.

Thus, convexity is preserved under intersection.

3 Optimality conditions of Constrained Convex Op-
timization

Theorem 1. Assume f is a convex function and differentiable, then

x∗ ∈ argmin
x∈C

f(x) (1)

iff for any y ∈ C

⟨∇f(x∗),y − x∗⟩ ≥ 0 (2)

Futhermore, if
C ≡ Rd,

then
⟨∇f(x∗),y − x∗⟩ ≥ 0, ∀y ∈ Rd

≡ ∇f(x∗) = 0

Proof (Theorem 1). First, we prove 2 → 1. By convexity, we know

f(y) ≥ f(x∗) + ⟨∇f(x∗),y − x∗⟩,
≥ f(x∗), ∀y ∈ C , by condition 2
⇒ x∗ ∈ argmin

x∈C
f(x)

Now, we prove 1 → 2. This is equivalent to showing the contrapositive, i.e. when
⟨∇f(x∗),y − x∗⟩ < 0 for some y ∈ C, then there exists z ∈ C such that

f(z) < f(x∗), i.e. x∗ /∈ argmin
x∈C

f(x).

Denote xα := αy + (1− α)x∗ and denote h(α) := f(xα), where

h : R → R,

f : Rd → R.
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We have that
h′(α) = ⟨∇f(xα),y − x∗⟩.

Observe that
α = 0 ⇒ xα = x∗.

Then,
lim
δ→0

h(0 + δ)− h(0)

δ
= h

′
(0) = ⟨∇f(x∗),y − x∗⟩ < 0.

But h(0 + δ) − h(0) = f(xδ) − f(x∗). Thus, we have that f(xδ) < f(x∗), which
contradicts the definition of the x∗, completing our proof.

Theorem 2. Assume f is a convex function, then

x∗ ∈ argmin
x∈C

f(x) (3)

iff there exists a subgradient gx∗ such that for any y ∈ C

⟨gx∗ ,y − x∗⟩ ≥ 0 (4)

Proof (Theorem 2). First, we prove 4 → 3. Let y ∈ C. Then,

f(y) ≥ f(x∗) + ⟨gx∗ ,y − x∗⟩
≥ f(x∗), ∀y ∈ C , by condition 4

In order to prove 3 → 4, we will need more toolikt. First, we will revisit the definition
of directional derivative and its relation to subdifferential ∂f(x).

Definition 4. (Directional Derivative) For convex f , at any point x ∈ dom f ,
and any u ∈ Rd, the directional derivative f

′
(x;u) exists and is

f
′
(x;u) := inf

α>0

f(x+ αu)− f(x)

α
.

Let us define h(α) : α → f(x+αu)−f(x)
α

. We will use the following lemma:

Lemma 1. When f(·) is convex, h(α) is increasing w.r.t. α.

Proof (Lemma 1). Consider 0 ≤ α1 ≤ α2

f(x+ α1u)− f(x)

α1

=
α2

α1

f(x+ α2(α1/α2)u)− f(x)

α2

(5)

=
α2

α1

f
(
(1− α1/α2)x+ (α1/α2) (x+ α2u)

)
− f(x)

α2

(6)
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≤ α2

α1

(1− α1/α2)f (x) + (α1/α2)f (x+ α2u)− f(x)

α2

(7)

=
f(x+ α2u)− f(x)

α2

(8)

Implication. If f(·) is convex, then every local minimum is also a global minimum.

Recall, that by definition of the directional derivative we have

f
′
(x;u) := inf

α>0

f(x+ αu)− f(x)

α
.

The following theorem demonstrates the connection between subdifferential ∂f(x)

and directional derivative.

Theorem 3. Let f(·) be closed and convex. Then,

f
′
(x;u) = sup

gx∈∂f(x)
⟨gx,u⟩.

Proof (Theorem 3). See Section 2.4 of [Duchi (2010)] for the proof.

Let’s try to make sense this relation. We have that for any subgradient gx ∈ ∂f(x),

f(x+ αu) ≥ f(x) + α⟨gx,u⟩.

Subtracting f(x) from both sides and dividing by α > 0 gives that

f(x+ αu)− f(x)

α
≥ ⟨gx,u⟩.

Therefore,

f(x+ αu)− f(x)

α
≥ sup

gx∈∂f(x)
⟨gx,u⟩.

Thus, for any gx ∈ ∂f(x), we have gx ∈ {gx : ⟨gx,u⟩ ≤ f
′
(x;u), ∀u}. Conversely, let

gx ∈ {gx : ⟨gx,u⟩ ≤ f
′
(x;u), ∀u}. By the increasing slopes condition, we have

⟨gx,u⟩ ≤ f
′
(x;u) ≤ f(x+ αu)− f(x)

α
,
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for all u and α > 0. Taking α = 1, we get the standard inequality

f(x+ αu) ≥ f(x) + α⟨gx,u⟩.

Thus, if gx ∈ {gx : ⟨gx,u⟩ ≤ f
′
(x;u), ∀u}, then gx ∈ ∂f(x). Therefore, an equivalent

characterization of the subdifferential is

∂f(x) = {gx : ⟨gx,u⟩ ≤ f
′
(x;u), ∀u}.

(Continue) Proof (Theorem 2). Now, we prove 3 ⇒ 4 using the definition of direc-
tional derivative. It suffices to show that for any gx∗ ∈ ∂f(x∗), if there exists a y ∈ C

such that
⟨gx∗ ,y − x∗⟩ < 0,

then we have a contradiction, i.e. x∗ /∈ argmin
x∈C

f(x). By

f
′
(x∗;y − x∗) = sup

gx∗∈∂f(x∗)

⟨gx∗ ,y − x∗⟩,

the condition implies that

⟨gx∗ ,y − x∗⟩ ≤ f
′
(x∗;y − x∗).

Additionally, since ∂f(x∗) is closed and bounded (hence compact), we have that
supgx∗∈∂f(x∗)⟨gx∗ ,y − x∗⟩ is attained and thus

f
′
(x∗;y − x∗) < 0,

which is a contradiction. For the proof of compactness of ∂f(x∗), see Section 2.4 of
[Duchi (2010)].
On the other hand, since x∗ ∈ argmin

x∈C
f(x), we have for any α ≥ 0

0 ≤ f(x∗ + α(y − x∗))− f(x∗)

α
(9)

Taking the limit as α → 0, we have that f
′
(x∗;y − x∗) ≥ 0, ∀y ∈ C.

Example Application - Projections

Definition 5. ProjC(y) := argmin
x∈C

∥y−x∥2 is the projection operator onto a constraint

set C.
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Figure 4: Illustration of projection operator

Theorem 4. Projection onto any convex set C are non-expansive, i.e.,

∥ProjC(y)− z∥2 ≤ ∥y − z∥2,

for any z in the convex set C.

Proof. Recall that

ProjC(y) := argmin
x∈C

∥y − x∥2 = argmin
x∈C

∥y − x∥22.

Denoting
min
x∈C

f(x),wheref(x) ∆
= ∥x− y∥22

and using the optimality condition, we get

⟨∇f(x∗), z − x∗⟩ ≥ 0, ∀z ∈ C (10)
⇔⟨x∗ − y, z − x∗⟩ ≥ 0, ∀z ∈ C (11)

Substituting in ProjC(y) for x∗, we get:

0 ≤ ⟨ProjC(y)− y, z − ProjC(y)⟩, ∀z ∈ C. (12)
= ⟨ProjC(y)− z + z − y, z − ProjC(y)⟩ (13)
= −∥ProjC(y)− z∥22 + ⟨z − y, z − ProjC(y)⟩. (14)
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Bibliographic notes
More information can be found in Chapter 2 of [Duchi (2010)], Chapter 3 and 4.2 of
[Sidford (2024)] and Chapter 1 of [Drusvyatskiy (2020)]
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