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Lecture 4: Gradient Descent of Smooth Function and
Introduction to Constrained Optimization

1 Review of Lecture 3

1.1 Smoothness vs. Strong Convexity
We note the difference between the first-order and second-order definitions of L-
smoothness and those of µ-strong convexity — the direction of the inequalities are
flipped.

1.1.1 First Order

Definition 1 (L-smoothness ). A differentiable function is L-smooth w.r.t. ∥·∥, if
∀x,y ∈ Rd we have

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2, (1)

where L > 0.

Definition 2 (µ-strong convexity). A differentiable function f : C → R defined
over a convex set C is µ-strongly convex w.r.t. a norm || · || if and only if for any
x,y ∈ C we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
||y − x||2,

for some µ > 0.

1.1.2 Second Order

Definition 3 (L-smoothness ). A twice differentiable function f(·) : C → R defined
over a set C ⊆ Rd is smooth w.r.t. a norm ∥ · ∥2, if and only if, ∀x ∈ C

y⊤∇2f(x)y ≤ L∥y∥22

for any y ∈ Rd.
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Definition 4 (µ-strong convexity). A twice differentiable function f : C → R
defined over a convex set C ⊆ Rd is µ-strongly convex w.r.t. a norm || · || if and
only if for any x ∈ C we have

y⊤∇2f(x)y ≥ µ∥y∥2

for some µ > 0 and any y ∈ Rd.

Remark: We see that L-smoothness and µ-strong convexity provide upper and lower
bounds, respectively, for the “strength” of the curvature of f at each point in its do-
main.

Example 1 (Smoothness): 1
2
x2

Example 2 (Smoothness): log(1 + exp(−x))

Example 3 (Non-smoothness): max{0, 1− x}

Example 4 (Non-smoothness): exp(−x)

1.2 Strong Convexity implies Gradient Dominance
Definition 5 (Gradient Dominant or Polyak-Lojasiewicz (PL) Condition).
We say a function f : Rd → R satisfies the “Gradient Dominance” condition, or
equivalently satisfies the PL-condition if, ∀x ∈ Rd

||∇f(x)||22 ≥ 2µ

(
f(x)−min

x
f(x)

)
, for some µ > 0.

Example 1 (Gradient Dominance): f(x) = x2 + 2 sin2(x) (non-convex)

Example 2 (Gradient Dominance): Any strongly convex function.

Theorem 1. The µ-strong convexity implies the µ-Gradient Dominant condition, i.e.,

||∇f(x)||22 ≥ 2µ

(
f(x)−min

x
f(x)

)
, for some µ > 0.

Remark: It is significant to note that the parameterization is identical (same µ value)
for the two definitions.
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2 GD in Smooth and Gradient Dominant Func-
tions

Theorem 2. For a function f : Rd → R that is both µ-gradient dominant and L-
smooth, performing gradient descent with step size η = 1

L
satisfies

f(xk+1)−min
x

f(x) ≤
(
1− µ

L

)k (
f(x1)−min

x
f(x)

)
Remark: Note that this is a linear convergence rate. An immediate corollary of
these two theorems is that a µ-strongly convex and L-smooth function would also
achieve linear convergence. In fact, strengthening µ-gradient dominance to µ-strong
convexity does not improve the convergence rate of GD under this analysis.

2.1 Upper Bound on Step Size η

Recall that the Gradient Descent update rule is as follows:

xk+1 = xk − η∇f(xk).

Because the function is L-smooth, we have:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 (by L-smoothness)

≤ f(xk)− η∥∇f(xk)∥2 +
Lη2

2
∥∇f(xk)∥2 (using the update rule)

= f(xk)−

(
η − Lη2

2

)
∥∇f(xk)∥2.

In order to guarantee that f(·) is always decreasing, we need that f(xk+1) ≤ f(xk)

for any xk. By inspection of the above equation, this is guaranteed by the condition:

η − Lη2

2
≥ 0

⇔ η ≥ Lη2

2

⇔ η ≤ 2

L
.

Thus, for a function with smoothness constant L, a step size no greater than 2
L

will
guarantee that the function value is decreasing at every step.
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3 GD of Smooth but Non-PL Function
Question: What happens if we relax the gradient-dominant (PL) condition?

Theorem 3. For a function f(·) that is both L-smooth and convex, performing Gra-
dient Descent with step size η = 1

L
satisfies:

f(xk+1)− min
x∈Rd

f(x) ≤ LD2

K
,

where D := maxk ∥xk − x∗∥ ≤ ∥x1 − x∗∥.

Remark: Since the optimality gap is bounded by 1
K

rather than αK for some
α ∈ [0, 1], this is only a sublinear rate of convergence. So, relaxing the PL condi-
tion eliminates the guarantee of a linear convergence, even for convex and smooth
functions.
Remark: Observe that we have

K = Θ̃

(
1

ϵ

)
.

3.1 Convergence Guarantee (Reduction)
The key idea is to make the non-gradient dominant function/non-strongly convex to
a strongly convex function and approximate the convergence condition of the original
function using the condition of the new function.

Lemma 1. Suppose f(x) is Lf -smooth convex, g(x) is Lg-smooth and µg-strongly
convex. Then, the function defined by

f̃(x) := f(x) + g(x)

is µf̃ -strongly convex and Lf̃ -smooth, where µf̃ := µg and Lf̃ := Lf + Lg.

Given a L-smooth convex but not strongly convex function f(·), let

f̃(x) := f(x) +
λ

2
∥x− x1∥22.

Since λ
2
∥x− x1∥22 is λ-strongly convex and also λ-smooth, i.e.,

g(x) :=
λ

2
∥x− x1∥22, Lg = µg = λ,

the lemma gives that f̃(x) is a Lf̃ smooth and µf̃ -strongly convex function with

Lf̃ = Lf + λ, µf̃ = λ. (2)
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Then, providing xk and x∗ = argminx f(x), we have

f(xk) = f̃(xk)−
λ

2
∥xk − x1∥22, (3)

f(x∗) = f̃(x∗)−
λ

2
∥x∗ − x1∥22. (4)

Subtracting (3) from (2)

f(xk)− f(x∗) = f̃(xk)− f̃(x∗) +
λ

2

(
∥x∗ − x1∥22 − ∥xk − x1∥22

)
.

Suppose the convergence criterion is

f(xk)− f(x∗) ≤ ϵ.

A convenient choice is to have

f̃(xk)− f̃(x∗) ≤
ϵ

2
, (5)

and
λ

2

(
∥x∗ − x1∥22 − ∥xk − x1∥22

)
≤ λ

2

(
∥x∗ − x1∥22

)
≤ ϵ

2
. (6)

Letting D ≡ ∥x∗ − x1∥22, this approximation gives

λ =
ϵ

D
. (7)

For (4), since x̃∗ = argminx f̃(x), f̃(xk)− f̃(x∗) is bounded by

f̃(xk)− f̃(x∗) ≤ f̃(xk)− f̃(x̃∗) ≤
ϵ

2
,

where we have used the fact that x̃∗ := argminx f̃(x) and therefore f̃(x∗) ≥ f̃(x̃∗).
We can now simply determine how many iterations on f̃ will be required to achieve
this ϵ

2
bound. Since f̃(x) is now strongly convex as well as smooth, we can achieve

linear convergence as follows:

f̃(xK)− f̃(x̃∗) ≤

(
1−

µf̃

Lf̃

)K−1 (
f̃(x1)− f̃(x̃∗)

)
≤ ϵ

2
,

which gives

K ≥
Lf̃

µf̃

log

2
(
f̃(x1)− f̃(x̃∗)

)
ϵ

 .
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By (1), (6), and let Ω = log

(
2(f̃(x1)−f̃(x̃∗))

ϵ

)
, we finally have:

K ≥
Lf̃

µf̃

Ω

=
L+ λ

λ
Ω (by lemma)

=
LD + ϵ

ϵ
Ω (since λ =

ϵ

D
)

= Õ

(
LD + ϵ

ϵ

)
= Õ

(
LD

ϵ

)
.

Thus, K = Õ
(
LD
ϵ

)
is the number of iterations after which convergence is guaranteed.

Remark: The reduction method has advantages such as can be flexibly applied and
relatively simple to prove. However, such a method is not the optimal analysis as
approximation is used.

4 Constrained Optimization

4.1 Problem Definition
A constrained optimization problem is defined as

min
x∈C

f(x), where C ⊂ Rd is a convex set.

Remark 1: Note that there need not exist a x∗ ∈ C such that ∇f(x∗) = 0. Thus,
the minimum is no longer required to be a stationary point.

Remark 2: Observe that C here is a strict subset of Rd.

We are going to show the optimality properties of the optimal point of a convex
constrained optimization problem. For that, we are going to consider the case that
f(·) is not necessarily differentiable everywhere.
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4.2 Subgradient
Definition 6 (Subgradient). For a function f(·), we say gx is a subgradient of f(·)
at x ∈ dom f , if ∀y we have

f(y) ≥ f(x) + ⟨gx,y − x⟩.

Fact: If f(·) is convex, a subgradient at any x ∈ dom f exists.

Remark: The subgradient is useful in cases when f(x) is not differentiable every-
where.

Example (Subgradient): Consider f(x) = |x|. Then, we have that

for x > 0 : ∇f(x) = 1,

for x < 0 : ∇f(x) = −1.

By definition of the subgradient we have that ∀y

f(y) ≥ f(x) + ⟨gx, y − x⟩.

The subgradient at x = 0 will satisfy

|y| ≥ 0 + gx(y − 0), ∀y
⇔ |y| ≥ gxy, ∀y.

We have that

for y ≥ 0 : ∇y ≥ gxy ⇔ 1 ≥ gx,

for y < 0 : ∇− y ≥ gxy ⇔ −1 ≤ gx.

Hence,

gx=0 ∈ [−1, 1].

Lemma 2. When f is convex and differentiable, gx = ∇f(x).

Bibliographic notes
More prelimiaries of calculus and linear algebra can be found in Chapter 2 of [Duchi (2010)],
Chapter 3 and Chapter 4.2 of [Sidford (2024)] and Chapter 1 of [Drusvyatskiy (2020)].
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