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Lecture 4: Gradient Descent of Smooth Function and
Introduction to Constrained Optimization

1 Review of Lecture 3

1.1 Smoothness vs. Strong Convexity

We note the difference between the first-order and second-order definitions of L-
smoothness and those of u-strong convexity — the direction of the inequalities are
flipped.

1.1.1 First Order

Definition 1 (L-smoothness ). A differentiable function is L-smooth w.r.t. ||-||, if
Vx,y € R? we have

F(y) < F6) + (V1005 =) + 2y —xI (1)
where L > 0.

Definition 2 (u-strong convexity). A differentiable function f : C — R defined
over a convez set C is p-strongly convex w.r.t. a norm || - || if and only if for any
x,y € C' we have

) 2 F6) + (V). y =) + Slly = x|

for some p > 0.

1.1.2 Second Order

Definition 3 (L-smoothness ). A twice differentiable function f(-) : C — R defined
over a set C C R? is smooth w.r.t. a norm || - |2, if and only if, ¥x € C

y' 'V f(x)y < L|yl3

for any y € R



Definition 4 (u-strong convexity). A twice differentiable function f : C — R
defined over a conver set C C R® is u-strongly conver w.r.t. a norm || - || if and
only if for any x € C' we have

y' V2 f(x)y > plyl?
for some > 0 and any y € R,

Remark: We see that L-smoothness and p-strong convexity provide upper and lower
bounds, respectively, for the “strength” of the curvature of f at each point in its do-
main.

Example 1 (Smoothness):

N =
8

Example 2 (Smoothness): log(1 + exp(—=x))
Example 3 (Non-smoothness): max{0,1 — z}

Example 4 (Non-smoothness): exp(—z)

1.2 Strong Convexity implies Gradient Dominance

Definition 5 (Gradient Dominant or Polyak-Lojasiewicz (PL) Condition).
We say a function f : R — R satisfies the “Gradient Dominance” condition, or
equivalently satisfies the PL-condition if, ¥x € R?

19013 2 20 (£ = min S ) for some > 0.
Example 1 (Gradient Dominance): f(z) = 2% + 2sin?(z) (non-convex)

Example 2 (Gradient Dominance): Any strongly convex function.

Theorem 1. The u-strong convexity implies the p-Gradient Dominant condition, i.e.,

197601 > 2 (60~ i 1)) for some >0

Remark: It is significant to note that the parameterization is identical (same u value)
for the two definitions.



2 GD in Smooth and Gradient Dominant Func-

tions

Theorem 2. For a function f : R* — R that is both p-gradient dominant and L-

smooth, performing gradient descent with step size n = % satisfies

o) —min o) < (1) (e —min )

Remark: Note that this is a linear convergence rate. An immediate corollary of
these two theorems is that a p-strongly convex and L-smooth function would also
achieve linear convergence. In fact, strengthening p-gradient dominance to p-strong
convexity does not improve the convergence rate of GD under this analysis.

2.1 Upper Bound on Step Size n

Recall that the Gradient Descent update rule is as follows:

Tpp1 = T — NV f(xg).

Because the function is L-smooth, we have:

L
f(@r) < flan) +(Vf(@n), 2esn = wi) + Fllow —al* - (by L-smoothness)

< flag) —nl|V f(zp)]]* + LTnzHVf(xk)HQ (using the update rule)
L 2
~ fla) - (n - 7") IV £ o)

In order to guarantee that f(-) is always decreasing, we need that f(zx.1) < f(zx)
for any x;. By inspection of the above equation, this is guaranteed by the condition:

2

n
n-—5- >

L772
= > —
=7
= <2
=7

Thus, for a function with smoothness constant L, a step size no greater than % will
guarantee that the function value is decreasing at every step.

w



3 GD of Smooth but Non-PL Function

Question: What happens if we relax the gradient-dominant (PL) condition?

Theorem 3. For a function f(-) that is both L-smooth and convez, performing Gra-
dient Descent with step size n = % satisfies:

LD?
f(@k41) — min f(z) < =,

where D := maxy, ||z — z.|| < [|z1 — x4

Remark: Since the optimality gap is bounded by % rather than of for some
a € [0,1], this is only a sublinear rate of convergence. So, relaxing the PL condi-
tion eliminates the guarantee of a linear convergence, even for convex and smooth
functions.

Remark: Observe that we have

3.1 Convergence Guarantee (Reduction)

The key idea is to make the non-gradient dominant function/non-strongly convex to
a strongly convex function and approximate the convergence condition of the original
function using the condition of the new function.

Lemma 1. Suppose f(x) is Lg-smooth convez, g(x) is Lgy-smooth and p,-strongly
convex. Then, the function defined by

fz) = fz) + g(z)
is pg-strongly convex and L j-smooth, where pj = pg and Ly := Ly + L.
Given a L-smooth convex but not strongly convex function f(-), let
fla) = £@) + Sl — ally

Since 3|z — 21]3 is A-strongly convex and also A-smooth, i.e.,

A
g(x) = §||93 — x5, Ly=py=A\

the lemma gives that f(z) is a L 7 smooth and y z-strongly convex function with
LJ;ZLf-l-)\, ,uf:)\. (2)

4



Then, providing x and z, = argmin, f(z), we have

F(oe) = Fa) — Sl — w3 ®)
fle) = Fw) = Sl —ml ©

Subtracting (3) from (2)

~ ~ A
o) = fxe) = flax) = @) + 5 (o = 2lls = llze = 15) -
Suppose the convergence criterion is

fxp) = flz.) < e

A convenient choice is to have

= x €
Flaw) = flad) < 5 (5)
and \ \
€
2 (e = 1l = = 723) < 2 (o = 3) < 5. Q
Letting D = ||z, — z1||3, this approximation gives
€
= —. 7
‘ )

For (4), since &, = argmin,, f(z), f(zx) — f(z,) is bounded by

fla) = fx.) < flay) = f(@) <

[NRINe

where we have used the fact that #, := argmin, f(z) and therefore f(z,) > f(%.).
We can now simply determine how many iterations on f will be required to achieve
this § bound. Since f (x) is now strongly convex as well as smooth, we can achieve
linear convergence as follows:

Jaw) - (@) < (1 - %) (fla) - f@) < 3.

which gives




By (1), (6), and let Q = log (M), we finally have:

Lj
K> —Q
Ky
L
= %AQ (by lemma)
LD +e €
- (since A D)

o <LD + 6)
€
~ (LD
oft)
€
Thus, K = O (%) is the number of iterations after which convergence is guaranteed.

Remark: The reduction method has advantages such as can be flexibly applied and
relatively simple to prove. However, such a method is not the optimal analysis as
approximation is used.

4 Constrained Optimization

4.1 Problem Definition

A constrained optimization problem is defined as

IIli(Ijl f(z), where C C R*is a convex set.
Te

Remark 1: Note that there need not exist a x, € C such that Vf(x,) = 0. Thus,
the minimum is no longer required to be a stationary point.

Remark 2: Observe that C here is a strict subset of RY.
We are going to show the optimality properties of the optimal point of a convex

constrained optimization problem. For that, we are going to consider the case that
f(+) is not necessarily differentiable everywhere.



4.2 Subgradient

Definition 6 (Subgradient). For a function f(-), we say g, is a subgradient of f(-)
at x € dom f, if Yy we have

f(y) > f(x) + (g2, y — %)

Fact: If f(-) is convex, a subgradient at any x € dom f exists.

Remark: The subgradient is useful in cases when f(z) is not differentiable every-
where.

Example (Subgradient): Consider f(z) = |z|. Then, we have that

forx >0: Vf(x)=1,
forx <0: Vf(x)=-1.

By definition of the subgradient we have that Vy

fy) = f(z) + (ge,y — 7).

The subgradient at x = 0 will satisfy

ly| >0+ g,(y —0), Yy
&yl > g0y, Vy.

We have that

fory>0: Vy>gy & 12> g,
fory<0: V—-y>gy & —1<g,.

Hence,
gz—0 € [—1, 1].

Lemma 2. When f is conver and differentiable, g, = V f(x).

Bibliographic notes

More prelimiaries of calculus and linear algebra can be found in Chapter 2 of [Duchi (2010]],
Chapter 3 and Chapter 4.2 of [Sidford (2024)] and Chapter 1 of [Drusvyatskiy (2020)].
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