Lecture 4: Gradient Descent of Smooth Function and Introduction to Constrained Optimization

1 Review of Lecture 3

1.1 Smoothness vs. Strong Convexity

We note the difference between the first-order and second-order definitions of Lsmoothness and those of μ -strong convexity — the direction of the inequalities are flipped.

1.1.1 First Order

Definition 1 (**L-smoothness**)**.** *A differentiable function is L-smooth w.r.t. ∥·∥, if ∀***x***,* **y** *∈* R *^d we have*

$$
f(\mathbf{y}) \le f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||^2,
$$
 (1)

where $L > 0$ *.*

Definition 2 (μ -strong convexity). A differentiable function $f: C \to \mathbb{R}$ defined *over a convex set C is* μ -strongly convex w.r.t. a norm $|| \cdot ||$ *if and only if for any* $\mathbf{x}, \mathbf{y} \in C$ *we have*

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2
$$

for some $\mu > 0$ *.*

1.1.2 Second Order

Definition 3 (**L-smoothness**). A twice differentiable function $f(\cdot): C \to \mathbb{R}$ defined *over a set* $C \subseteq \mathbb{R}^d$ *is smooth w.r.t. a norm* $\|\cdot\|_2$ *, if and only if,* $\forall \mathbf{x} \in C$

$$
\mathbf{y}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{y} \leq L \|\mathbf{y}\|_2^2
$$

for any $y \in \mathbb{R}^d$.

Definition 4 (μ -strong convexity). A twice differentiable function $f: C \to \mathbb{R}$ *defined over a convex set* $C \subseteq \mathbb{R}^d$ *is* μ *-strongly convex w.r.t. a norm* $|| \cdot ||$ *if and only if for any* $x \in C$ *we have*

$$
\mathbf{y}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{y} \ge \mu \| \mathbf{y} \|^2
$$

for some $\mu > 0$ *and any* $y \in \mathbb{R}^d$.

Remark: We see that L-smoothness and μ -strong convexity provide upper and lower bounds, respectively, for the "strength" of the curvature of *f* at each point in its domain.

 $\textbf{Example 1} \text{ (Smoothness)}: \frac{1}{2}x^2$

Example 2 (Smoothness): $\log(1 + \exp(-x))$

Example 3 (Non-smoothness): max $\{0, 1 - x\}$

Example 4 (Non-smoothness): $exp(-x)$

1.2 Strong Convexity implies Gradient Dominance

Definition 5 (**Gradient Dominant** or **Polyak-Lojasiewicz (PL) Condition**)**.** *We say a function* $f : \mathbb{R}^d \to \mathbb{R}$ *satisfies the "Gradient Dominance" condition, or equivalently satisfies the PL-condition if,* $\forall \mathbf{x} \in \mathbb{R}^d$

$$
\|\nabla f(\mathbf{x})\|_2^2 \ge 2\mu\left(f(\mathbf{x}) - \min_{\mathbf{x}} f(\mathbf{x})\right) , \text{ for some } \mu > 0.
$$

Example 1 (Gradient Dominance): $f(x) = x^2 + 2\sin^2(x)$ (non-convex)

Example 2 (Gradient Dominance): Any strongly convex function.

Theorem 1. *The µ-strong convexity implies the µ-Gradient Dominant condition, i.e.,*

$$
||\nabla f(\mathbf{x})||_2^2 \ge 2\mu \left(f(\mathbf{x}) - \min_{\mathbf{x}} f(\mathbf{x}) \right) , \text{ for some } \mu > 0.
$$

Remark: It is significant to note that the parameterization is identical (same μ value) for the two definitions.

2 GD in Smooth and Gradient Dominant Functions

Theorem 2. For a function $f : \mathbb{R}^d \to \mathbb{R}$ that is both μ -gradient dominant and L*smooth, performing gradient descent with step size* $\eta = \frac{1}{l}$ *L satisfies*

$$
f(x_{k+1}) - \min_x f(x) \le \left(1 - \frac{\mu}{L}\right)^k \left(f(x_1) - \min_x f(x)\right)
$$

Remark: Note that this is a linear convergence rate. An immediate corollary of these two theorems is that a μ -strongly convex and *L*-smooth function would also achieve linear convergence. In fact, strengthening μ -gradient dominance to μ -strong convexity does not improve the convergence rate of GD under this analysis.

2.1 Upper Bound on Step Size *η*

Recall that the Gradient Descent update rule is as follows:

$$
x_{k+1} = x_k - \eta \nabla f(x_k).
$$

Because the function is *L*-smooth, we have:

$$
f(x_{k+1}) \le f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||^2 \quad \text{(by } L\text{-smoothness)}
$$

\n
$$
\le f(x_k) - \eta ||\nabla f(x_k)||^2 + \frac{L\eta^2}{2} ||\nabla f(x_k)||^2 \quad \text{(using the update rule)}
$$

\n
$$
= f(x_k) - \left(\eta - \frac{L\eta^2}{2}\right) ||\nabla f(x_k)||^2.
$$

In order to guarantee that $f(\cdot)$ is always decreasing, we need that $f(x_{k+1}) \leq f(x_k)$ for any x_k . By inspection of the above equation, this is guaranteed by the condition:

$$
\eta - \frac{L\eta^2}{2} \ge 0
$$

$$
\Leftrightarrow \eta \ge \frac{L\eta^2}{2}
$$

$$
\Leftrightarrow \eta \le \frac{2}{L}.
$$

Thus, for a function with smoothness constant L, a step size no greater than $\frac{2}{L}$ will guarantee that the function value is decreasing at every step.

3 GD of Smooth but Non-PL Function

Question: What happens if we relax the gradient-dominant (PL) condition?

Theorem 3. *For a function f*(*·*) *that is both L-smooth and convex, performing Gradient Descent with step size* $\eta = \frac{1}{l}$ *L satisfies:*

$$
f(x_{k+1}) - \min_{x \in \mathbb{R}^d} f(x) \le \frac{LD^2}{K},
$$

 $where D := \max_{k} ||x_k - x_*|| \leq ||x_1 - x_*||.$

Remark: Since the optimality gap is bounded by $\frac{1}{K}$ rather than α^{K} for some $\alpha \in [0,1]$, this is only a sublinear rate of convergence. So, relaxing the PL condition eliminates the guarantee of a linear convergence, even for convex and smooth functions.

Remark: Observe that we have

$$
K = \tilde{\Theta}\left(\frac{1}{\epsilon}\right).
$$

3.1 Convergence Guarantee (Reduction)

The key idea is to make the non-gradient dominant function/non-strongly convex to a strongly convex function and approximate the convergence condition of the original function using the condition of the new function.

Lemma 1. Suppose $f(x)$ is L_f -smooth convex, $g(x)$ is L_g -smooth and μ_g -strongly *convex. Then, the function defined by*

$$
\tilde{f}(x):=f(x)+g(x)
$$

is $\mu_{\tilde{f}}$ -strongly convex and $L_{\tilde{f}}$ -smooth, where $\mu_{\tilde{f}} := \mu_g$ and $L_{\tilde{f}} := L_f + L_g$.

Given a *L*-smooth convex but not strongly convex function $f(\cdot)$, let

$$
\tilde{f}(x) := f(x) + \frac{\lambda}{2} ||x - x_1||_2^2.
$$

Since $\frac{\lambda}{2} ||x - x_1||_2^2$ is λ -strongly convex and also λ -smooth, i.e.,

$$
g(x) := \frac{\lambda}{2} ||x - x_1||_2^2, \quad L_g = \mu_g = \lambda,
$$

the lemma gives that $\tilde{f}(x)$ is a $L_{\tilde{f}}$ smooth and $\mu_{\tilde{f}}$ -strongly convex function with

$$
L_{\tilde{f}} = L_f + \lambda, \quad \mu_{\tilde{f}} = \lambda.
$$
\n⁽²⁾

Then, providing x_k and $x_* = \arg \min_x f(x)$, we have

$$
f(x_k) = \tilde{f}(x_k) - \frac{\lambda}{2} \|x_k - x_1\|_2^2,
$$
\n(3)

$$
f(x_*) = \tilde{f}(x_*) - \frac{\lambda}{2} \|x_* - x_1\|_2^2.
$$
 (4)

Subtracting (3) from (2)

$$
f(x_k) - f(x_*) = \tilde{f}(x_k) - \tilde{f}(x_*) + \frac{\lambda}{2} (||x_* - x_1||_2^2 - ||x_k - x_1||_2^2).
$$

Suppose the convergence criterion is

$$
f(x_k) - f(x_*) \le \epsilon.
$$

A convenient choice is to have

$$
\tilde{f}(x_k) - \tilde{f}(x_*) \le \frac{\epsilon}{2},\tag{5}
$$

and

$$
\frac{\lambda}{2} \left(\|x_* - x_1\|_2^2 - \|x_k - x_1\|_2^2 \right) \le \frac{\lambda}{2} \left(\|x_* - x_1\|_2^2 \right) \le \frac{\epsilon}{2}.
$$
\n(6)

Letting $D \equiv ||x_* - x_1||_2^2$, this approximation gives

$$
\lambda = \frac{\epsilon}{D}.\tag{7}
$$

For (4), since $\tilde{x}_* = \operatorname{argmin}_x \tilde{f}(x)$, $\tilde{f}(x_k) - \tilde{f}(x_*)$ is bounded by

$$
\tilde{f}(x_k) - \tilde{f}(x_*) \le \tilde{f}(x_k) - \tilde{f}(\tilde{x}_*) \le \frac{\epsilon}{2},
$$

where we have used the fact that $\tilde{x}_* := \arg \min_x \tilde{f}(x)$ and therefore $\tilde{f}(x_*) \geq \tilde{f}(\tilde{x}_*)$. We can now simply determine how many iterations on \tilde{f} will be required to achieve this $\frac{\epsilon}{2}$ bound. Since $\tilde{f}(x)$ is now strongly convex as well as smooth, we can achieve linear convergence as follows:

$$
\tilde{f}(x_K) - \tilde{f}(\tilde{x}_*) \le \left(1 - \frac{\mu_{\tilde{f}}}{L_{\tilde{f}}}\right)^{K-1} \left(\tilde{f}(x_1) - \tilde{f}(\tilde{x}_*)\right) \le \frac{\epsilon}{2},
$$

which gives

$$
K \ge \frac{L_{\tilde{f}}}{\mu_{\tilde{f}}} \log \left(\frac{2\left(\tilde{f}(x_1) - \tilde{f}(\tilde{x}_*)\right)}{\epsilon} \right).
$$

By (1), (6), and let
$$
\Omega = \log \left(\frac{2(\tilde{f}(x_1) - \tilde{f}(\tilde{x}_*))}{\epsilon} \right)
$$
, we finally have:
\n
$$
K \ge \frac{L_{\tilde{f}}}{\mu_{\tilde{f}}} \Omega
$$
\n
$$
= \frac{L + \lambda}{\lambda} \Omega \qquad \text{(by lemma)}
$$
\n
$$
= \frac{LD + \epsilon}{\epsilon} \Omega \qquad \text{(since } \lambda = \frac{\epsilon}{D})
$$
\n
$$
= \tilde{O}\left(\frac{LD + \epsilon}{\epsilon}\right)
$$
\n
$$
= \tilde{O}\left(\frac{LD}{\epsilon}\right).
$$

Thus, $K = \tilde{O} \left(\frac{LD}{\epsilon} \right)$ $\frac{dD}{d\epsilon}$ is the number of iterations after which convergence is guaranteed.

Remark: The reduction method has advantages such as can be flexibly applied and relatively simple to prove. However, such a method is not the optimal analysis as approximation is used.

4 Constrained Optimization

4.1 Problem Definition

A constrained optimization problem is defined as

$$
\min_{x \in C} f(x), \quad where \ C \subset \mathbb{R}^d \ is \ a \ convex \ set.
$$

Remark 1: Note that there need not exist a $x_* \in C$ such that $\nabla f(x_*) = 0$. Thus, the minimum is no longer required to be a stationary point.

Remark 2: Observe that *C* here is a strict subset of R *d* .

We are going to show the optimality properties of the optimal point of a convex constrained optimization problem. For that, we are going to consider the case that $f(\cdot)$ is not necessarily differentiable everywhere.

4.2 Subgradient

Definition 6 (**Subgradient**). For a function $f(\cdot)$, we say g_x is a subgradient of $f(\cdot)$ *at* **x** *∈ dom f, if ∀***y** *we have*

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \langle g_x, \mathbf{y} - \mathbf{x} \rangle.
$$

Fact: If $f(\cdot)$ is convex, a subgradient at any $\mathbf{x} \in \text{dom } f$ exists.

Remark: The subgradient is useful in cases when $f(x)$ is not differentiable everywhere.

Example (Subgradient): Consider $f(x) = |x|$. Then, we have that

for
$$
x > 0
$$
: $\nabla f(x) = 1$,
for $x < 0$: $\nabla f(x) = -1$.

By definition of the subgradient we have that *∀y*

$$
f(y) \ge f(x) + \langle g_x, y - x \rangle.
$$

The subgradient at $x = 0$ will satisfy

$$
|y| \ge 0 + g_x(y-0), \ \forall y
$$

$$
\Leftrightarrow |y| \ge g_x y, \ \forall y.
$$

We have that

for
$$
y \ge 0
$$
: $\nabla y \ge g_x y \Leftrightarrow 1 \ge g_x$,
for $y < 0$: $\nabla - y \ge g_x y \Leftrightarrow -1 \le g_x$.

Hence,

$$
g_{x=0} \in [-1, 1].
$$

Lemma 2. *When* f *is convex and differentiable,* $g_x = \nabla f(\mathbf{x})$ *.*

Bibliographic notes

More prelimiaries of calculus and linear algebra can be found in Chapter 2 of [[Duchi \(2010\)](#page-7-0)], Chapter 3 and Chapter 4.2 of [[Sidford \(2024\)\]](#page-7-1) and Chapter 1 of [\[Drusvyatskiy \(2020\)\]](#page-7-2).

References

- [Duchi (2010)] John Duchi. Introductory Lectures on Stochastic Optimization. 2010.
- [Sidford (2024)] Aaron Sidford. Optimization Algorithms. 2024
- [Drusvyatskiy (2020)] Dmitriy Drusvyatskiy. Convex Analysis and Nonsmooth Optimization. 2020.