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Lecture 3: (Continue) Convex Analysis I and Gradient Descent

1 Review of Lecture 2

1.1 Convex Functions
Definition 1. (Zero Order Characterization of Convex Functions): A func-
tion f : C → R defined over a convex set C is called convex if, for any x,y ∈ C and
any α ∈ [0, 1], the following inequality holds

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y).

Figure 1: An illustration of zero-order characterization of convexity

Figure 1 shows that for a convex function f , for any two points x,y, the function
f evaluated at any convex combination of x,y should be no larger than the same
convex combination of f(x) and f(y).

Definition 2. (First Order Characterization of Convex Functions): A dif-
ferentiable function f : C → R defined over a convex set C is called convex if and
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only if, for any x,y ∈ C

f(y) ≥ f(x) + ⟨∇f(x), (y − x)⟩.

Figure 2: An illustration of first-order characterization of convexity

Figure 2 shows that the function always dominates its first-order (linear) Taylor
approximation.
Definition 3. (Second Order Characterization of Convex Functions): A
twice-differentiable function f : C → R defined over a convex set C is convex if and
only if, for any x ∈ C, the Hessian matrix evaluated at x is positive semi-definite,
i.e.

∇2f(x) ⪰ 0.

Definition 4. (Equivalency of convexity): For any x ∈ C ⊆ Rd and y ∈ C ⊆ Rd,
and any α ∈ [0, 1]:

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y)

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩
∇2f(x) ⪰ 0

Definition 5. (Equivalency of strong convexity): A function f : C → R defined
over a convex set C is µ-strongly convex w.r.t. a norm || · || if, for any x ∈ C ⊆ Rd,
y ∈ C ⊆ Rd, z ∈ Rd, and any α ∈ [0, 1]:

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y)− µ

2
α(1− α)||y − x||2.

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
||y − x||2.

z⊤∇2f(x)z ≥ µ∥z∥2
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for some µ > 0.

Remark:
If ∥ · ∥ ≡ ∥ · ∥2 and z is an eigenvector of ∇2f(x), then

∇2f(z) = λz, for some λ

⇒ z⊤∇2f(x)z = λ∥z∥2 ≥ µ∥z∥2

⇔ λ ≥ µ

Question: What happens if the norm is not l2?
Answer: In that case, λ ≥ 0 but the inequality between λ and µ will be related by
some constants.

Definition 6. (Gradient Dominant or Polyak-Lojasiewicz (PL) Condition):
We say a function f : Rd → R satisfies the “Gradient Dominance” condition if

||∇f(x)||22 ≥ 2µ

(
f(x)−min

x
f(x)

)
, for some µ > 0.

Remark: For any function satisfying the PL condition, every stationary point is a
global minimum.

Gradient Flow: The Gradient Flow is defined as:

dx(t)

dt
= −∇f

(
x(t)

)
Question: Can an optimal solution also be a maximum?
Answer: We usually consider the minima in an optimization problem. Observe that
the problem of maximizing a function f is equivalent to the problem of minimizing
−f .

Theorem 1. Assume f(·) satisfies µ-gradient dominance condition. Gradient Flow
for minw f(w) satisfies:

f(xt)−min
x

f(x) ≤ exp (−2µt)
(
f(x0)−min

x
f(x)

)
Remark: Denote ak = f(xt)−minx f(x).
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Definition 7. (Linear Rate): We say ak converges linearly if there exist constants
c > 0, q ∈ (0, 1] satisfying

ak ≤ c(1− q)k for all k. (1)

In this case, we call 1− q the linear rate of convergence.

Equivalency of strong convexity: For any x ∈ C ⊆ Rd, y ∈ C ⊆ Rd, z ∈ Rd,
and any α ∈ [0, 1]:

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y)− µ

2
α(1− α)||y − x||2. (2)

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
||y − x||2. (3)

z⊤∇2f(x)z ≥ µ∥z∥2 (4)

for some µ > 0, while convexity is when µ = 0.

Question: For a given problem, which inequality should be used to prove convexity
and strong convexity?
Answer: If the function is continuous, then we can use the zero-order character-
ization. If the function is additionally (once) continuously differentiable, then we
can also use the first-order characterization. If, additionally, the function is contin-
uously differentiable up to the second-order, then we can also use the second-order
characterization.

1.2 Proof: First Order Def. (3) → Second Order Def. (4)
Denote xα := x+ αz, and denote g(α) := f(xα).
Then, by chain rule,

g
′
(α) =

∂f(xα)

∂α

=
d∑

i=1

∂f(xα)

∂xα[i]

∂xα[i]

∂α

=
d∑

i=1

∂f(xα)

∂xα[i]
z[i]

= ⟨∇f(xα), z⟩.
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Also,

g
′′
(α) =

d∑
i=1

∂

∂α

(
∂f(xα)

∂xα[i]

)
z[i]

=
d∑

i=1

(
d∑

j=1

∂2f(xα)

∂xα[i]∂xα[j]

∂xα[j]

∂α
)z[i]

=
d∑

i=1

(
d∑

j=1

∇2f(xα[i, j])z[j])z[i]

= z⊤∇2f(xα)z.

Continuing, we have that

g′(α) = ⟨∇f(xα), z⟩
g′(0) = ⟨∇f(x), z⟩

and
g′′(α) = zT∇2f(xα)z (5)

zT∇2f(x)z = g′′(0) = lim
α→0

g′(α)− g′(0)

α
(6)

= lim
α→0

⟨∇f(xα)−∇f(x), z⟩
α

(7)

= lim
α→0

⟨∇f(xα)−∇f(x),xα − x⟩
α2

(8)

Remark: We get from (7) to (8) by subbing in z = xα−x
α

We further lower-bound ⟨∇f((xα)−∇f(x),xα − x⟩ as follows:
By strong convexity:

f(xα) ≥ f(x) + ⟨∇f(x,xα − x⟩+ µ

2
||xα − x||2 (9)

f(x) ≥ f(xα) + ⟨∇f(xα,x− xα⟩+
µ

2
||xα − x||2 (10)

Remark: Here, f(xα) and f(x) cancel each other out.

Adding the above two, (9) and (10), we get

⟨∇f(xα)−∇f(x),xα − x⟩ ≥ µα2||z||2 (11)

Combining (5), (10), (11) yields

zT∇2f(x)z ≥ µ||z||2
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1.3 Proof First Order Def. (4) to Second Order Def. (3)
We denote xα := x + α(y− x)

Lemma:

f(y) = f(x) + ⟨∇f(x),y− x⟩+
∫ 1

0

∫ θ

0

(y− x)T∇2f(xα)(y− x)dαdθ

see e.g., Lemma 3.11 of [Sidford (2024)] for the proof. It can be shown by (the variants
of) the Fundamental Theorem of Calculus that we saw in Lecture 1.
Starting from

zT∇2f(x)z ≥ µ||z||2, ∀z ∈ Rd.

Plugging in z← y− x and x← xα we get,

f(y) = f(x) + ⟨∇f(x),y− x⟩+
∫ 1

0

∫ θ

0

(y− x)T∇2f(xα)(y− x)dαdθ

≥ f(x) + ⟨∇f(x),y− x⟩+
∫ 1

0

∫ θ

0

µ||y− x||2dαdθ , by second-order characterization

= f(x) + ⟨∇f(x),y− x⟩+ µ

2
||y− x||2, since

∫ θ

0

µ||y− x||2dα = µ||y− x||2θ

and
∫ 1

0

θdθ =
1

2
.

1.4 Examples of functions satisfying the “Gradient Domi-
nant” condition

Example 1: Squared loss

1

2
x2

Example 2: Negative Entropy over the simplex {x ∈ Rd : x[i] ≥ 0,
∑d

i=1 x[i] = 1}

f(x) =
d∑

i=1

x[i]logx[i]

Example 3: Strongly convex functions

Theorem 2. The µ-strong convexity implies the µ-Gradient Dominant condition, i.e.,
||∇f(x)||22 ≥ 2µ(f(x)−minxf(x)) , for some µ > 0.
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Definition 8. (µ-strong convexity):
For ∀x,y

f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ
2
||y− x||22

Proof. Let hx(y) := f(x) + ⟨∇f(x),y− x⟩+ µ
2
||y− x||22, then we get can get

min
y∈Rd

f(y) ≥ min
y∈Rd

hx(y) (12)

Solving for miny hx(y) we get,

min
y

hx(y) ≡ min
y∈Rd

f(x) + ⟨∇f(x,y− x⟩+ µ

2
||y− x||22

Let

y∗ ∈ argmin
x∈Rd

hx(y)

Then,

∇h(y∗) = ∇f(x) + µ(y∗ − x) = 0 ∈ Rd

⇔ y∗ − x = −∇f(x)
µ

Using this we get,

min
y

hx(y) ≡ f(x)− ||∇f(x)||
2
2

µ
+

1

2µ
||∇f(x)||22

= f(x)− 1

2µ
||∇f(x)||22

Solving for miny f(y) we get,

min
y

f(y) ≥ f(x)− 1

2µ
||∇f(x)||22

⇔ ||∇f(x)||22 ≥ 2µ(f(x)−min
y

f(y))
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2 Upper and Lower Bound of a function f(y)

2.1 L-smoothness and u-strong convexity
Definition 9. (L-smoothness of a function): A differentiable function f is L-
smooth w.r.t. a norm ∥·∥, if ∀x,y

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2 (13)

where L > 0.

Remark: L is a finite number otherwise if L is infinite this becomes a trivial upper
bound of f(y).

Definition 10. (µ-strong convexity): A differentiable function f : C → R defined
over a convex set C is µ-strongly convex w.r.t. a norm || · || if and only if for any
x,y ∈ C we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
||y − x||2 (14)

for some µ > 0.

Remark: Smoothness inequality provides an upper bound. Strong convexity inequal-
ity provides a lower bound.

If a function f(y) satisfies both conditions, i.e.,

f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2 ≥ f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
||y − x||2

then the condition number of the Hessian is κ =
L

µ
≥ 1.

In Figure 3 f(y) is lower bounded by the red curve found by applying µ-strong con-
vexity and is upper bounded by the green curve found by applying the L-smoothness.

Definition 11. (Second-order characterization of L-smoothness)1 A twice
differentiable function f(·) : C → R defined over a set C ⊆ Rd is smooth w.r.t. a
norm ∥ · ∥2, if and only if ∀x ∈ C,

z⊤∇2f(x)z ≤ L∥z∥22, ∀x ∈ C, ∀z ∈ Rd.

1See e.g., Section 3.5 of Aaron Sidford “Optimization Algorithms” for the proof.
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Figure 3: Visualization of lower and upper bounds

Remark: As∇2f(x) is positive semi-definite, all of its eigenvalues λ are non-negative.
The maximum eigenvalue satisfies λmax(∇2f(x)) ≤ L, ∀x ∈ C. Also, if a function
f(x) satisfies second-order µ-strong convexity e.g., z⊤∇2f(x)z ≥ µ∥z∥22, then the
condition number of ∇2f(x) is κ =

L

µ
≥ 1.

Example 1:

min
x∈Rd

1

2
x⊤Ax− b⊤x, where A ≻ 0.

• Denote λmax(A) the largest eigenvalue of A is also the smoothness constant L,
i.e. L = λmax(A).

• Denote λmin(A) > 0 the smallest eigenvalue of A is also the µ-strong convexity
constant µ, i.e. µ = λmin(A).

Example 2: f(x) = 1
2
x2 is a smooth function as ∇2f(x) = 1 the Hessian is upper

bounded by 1.

Example 3: log(1+exp(−x)) this is called logistic function and is a smooth function.
The first derivative is

f ′(x) = − exp(−x)
1 + exp(−x)

= − 1

1 + exp(x)
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And then, the second derivative f ′′(x) is

f ′′(x) =
exp(x)

(1 + exp(x))2
≤ 0

because the denominator approaches infinity faster than the numerator does as x→
∞.

Example 4: max{0, 1− x} is called Hinge Loss, and it is not a smooth function as
it is not differentiable at 1. Verifying by computing the derivative at 1. f ′(1) = −1
when x→ 1− while f ′(1) = 0 when x→ 1+.

Example 5: f(x) = exp(−x) has f ′′(x) = exp(−x) which is not bounded thus not a
smooth function.

2.2 L-Lipschitz gradients
Theorem 3. Suppose that f(·) has L-Lipschitz gradients w.r.t. l2 norm, i.e.,

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 (15)

for any x,y ∈ Rd. Then, L-Lipschitz gradients implies L-smoothness, i.e.,

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥x− y∥22, (16)

for any x,y ∈ Rd.

Remark: When the function is convex equation, the inverse is also true, i.e. L-
smoothness (16) implies L-Lipschitz gradients (15) (verifying this in homework 1,
problem 5)

3 The Upper Bound of Optimality Gap in Gradi-
ent Descent

Consider the problem of minimizing f using Gradient Descent i.e. minx∈Rd f(x).

Algorithm 1 Gradient Descent
1: Input: an initial point x0 ∈ dom f and step size η.
2: for k = 1 to K do
3: xk+1 ← xk − η∇f (xk)

4: end for
5: Return xk+1.
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Theorem 4. Assume f(·) is µ−gradient dominant and L−smooth, then gradient de-
scent with η = 1

L
satisfies

f(xk+1)− min
x∈Rd

f(x) ≤
(
1− µ

L

)k (
f(x1)− min

x∈Rd
f(x)

)
.

Remark: Under the assumptions of theorem (4), the convergerence rate of Gradient
Descent is (1− 1

κ
).

Proof. Starting from L-smoothness inequality:

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩+ L

2
∥y − x∥2 (17)

Assigning:
y← xk+1

x← xk

and from gradient descent update step, we have:

xk+1 = xk − η∇f(xk)

⇔xk+1 − xk = −η∇f(xk)

Equation (17) becomes:

f(xk+1) ≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2

= f(xk) + ⟨∇f(xk),−η∇f(xk)⟩+
L

2
∥ − η∇f(xk)∥2

= f(xk)− η∥∇f(xk)∥2 +
Lη2

2
∥∇f(xk)∥2

= f(xk)−

(
η − Lη2

2

)
∥∇f(xk)∥2

= f(xk)−
(
1

L
− L

2L2

)
∥∇f(xk)∥2, as η =

1

L

= f(xk)−
(

1

2L

)
∥∇f(xk)∥2

≤ f(xk)−
(
2µ

2L

)
(f(xk)− min

x∈Rd
f(x)), by PL-condition

Remark: The last inequality is obtained by manipulating the gradient dominant or
PL condition as:

||∇f(xk)||22 ≥ 2µ

(
f(xk)− min

x∈Rd
f(x)

)
⇐⇒ −||∇f(xk)||22 ≤ −2µ

(
f(xk)− min

x∈Rd
f(x)

)
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Thus:

f(xk+1) ≤ f(xk)−
(
µ

L

)
(f(xk)− min

x∈Rd
f(x))

⇐⇒ f(xk+1)− min
x∈Rd

f(x) ≤ (f(xk)− min
x∈Rd

f(x))−
(
µ

L

)
(f(xk)− min

x∈Rd
f(x))

≤
(
1− µ

L

)
(f(xk)− min

x∈Rd
f(x))

≤
(
1− µ

L

)2

(f(xk−1)− min
x∈Rd

f(x))

...

≤
(
1− µ

L

)k

(f(x1)− min
x∈Rd

f(x))

Remark: The optimality gap at the next iteration k+1 is bounded by
(
1− µ

L

)
times

the current optimality gap at iteration k, and is bounded by
(
1− µ

L

)k times the gap
at iteration 1.

Bibliographic notes
More to read on Chapter 3 and Chapter 4 of [Drusvyatskiy (2020)] and Chapter 3
and Chapter 4.2 of [Sidford (2024)] and Chapter 6 of [Vishnoi (2021)]
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