ECE 273 Convex Optimization and Applications Instructor: Jun-Kun Wang Scribe: Trevor Kam, Nam Do, Siddhanth Ramani April 9, 2024 Editor/TA: Marialena Sfyraki

Lecture 3: (Continue) Convex Analysis I and Gradient Descent

1 Review of Lecture 2

1.1 Convex Functions

Definition 1. *(Zero Order Characterization of Convex Functions): A function* $f: C \to \mathbb{R}$ *defined over a convex set C is called convex if, for any* $\mathbf{x}, \mathbf{y} \in C$ *and any* $\alpha \in [0, 1]$ *, the following inequality holds*

$$
f\left(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}\right) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y}).
$$

Figure 1: An illustration of zero-order characterization of convexity

Figure [1](#page-0-0) shows that for a convex function f , for any two points \mathbf{x}, \mathbf{y} , the function *f* evaluated at any convex combination of **x***,* **y** should be no larger than the same convex combination of $f(\mathbf{x})$ and $f(\mathbf{y})$.

Definition 2. *(First Order Characterization of Convex Functions): A differentiable function* $f: C \to \mathbb{R}$ *defined over a convex set C is called convex if and*

only if, for any $x, y \in C$

$$
\begin{array}{|c|c|}\n\hline\n\end{array}
$$

 $f(\mathbf{y}) > f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), (\mathbf{y} - \mathbf{x}) \rangle$.

Figure 2: An illustration of first-order characterization of convexity

Figure [2](#page-1-0) shows that the function always dominates its first-order (linear) Taylor approximation.

Definition 3. *(Second Order Characterization of Convex Functions): A twice-differentiable function* $f: C \to \mathbb{R}$ *defined over a convex set C is convex if and only* if, for any $\mathbf{x} \in C$, the Hessian matrix evaluated at \mathbf{x} is positive semi-definite, *i.e.*

$$
\nabla^2 f(\mathbf{x}) \succeq 0.
$$

 $\bf{Definition 4.}$ *(Equivalency of convexity): For any* $\mathbf{x} \in C \subseteq \mathbb{R}^d$ and $\mathbf{y} \in C \subseteq \mathbb{R}^d,$ *and any* $\alpha \in [0, 1]$ *:*

$$
f((1 - \alpha)\mathbf{x} + \alpha \mathbf{y}) \le (1 - \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y})
$$

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle
$$

$$
\nabla^2 f(\mathbf{x}) \succeq 0
$$

Definition 5. *(Equivalency of strong convexity): A function* $f: C \to \mathbb{R}$ *defined over a convex set C is* μ -strongly convex w.r.t. a norm $|| \cdot ||$ *if, for any* $\mathbf{x} \in C \subseteq \mathbb{R}^d$, $\mathbf{y} \in C \subseteq \mathbb{R}^d$, $\mathbf{z} \in \mathbb{R}^d$, and any $\alpha \in [0, 1]$:

$$
f((1 - \alpha)\mathbf{x} + \alpha \mathbf{y}) \le (1 - \alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}) - \frac{\mu}{2}\alpha(1 - \alpha)||\mathbf{y} - \mathbf{x}||^2.
$$

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2}||\mathbf{y} - \mathbf{x}||^2.
$$

$$
\mathbf{z}^\top \nabla^2 f(\mathbf{x}) \mathbf{z} \ge \mu ||\mathbf{z}||^2
$$

for some $\mu > 0$ *.*

Remark:

If $|| \cdot || \equiv || \cdot ||_2$ and **z** is an eigenvector of $\nabla^2 f(\mathbf{x})$, then

$$
\nabla^2 f(\mathbf{z}) = \lambda \mathbf{z}, \text{ for some } \lambda
$$

\n
$$
\Rightarrow \mathbf{z}^\top \nabla^2 f(\mathbf{x}) \mathbf{z} = \lambda ||\mathbf{z}||^2 \ge \mu ||\mathbf{z}||^2
$$

\n
$$
\Leftrightarrow \lambda \ge \mu
$$

Question: What happens if the norm is not l_2 ?

Answer: In that case, $\lambda \geq 0$ but the inequality between λ and μ will be related by some constants.

Definition 6. *(Gradient Dominant or Polyak-Lojasiewicz (PL) Condition): We say a function* $f: \mathbb{R}^d \to \mathbb{R}$ *satisfies the "Gradient Dominance" condition if*

$$
||\nabla f(\mathbf{x})||_2^2 \ge 2\mu \left(f(\mathbf{x}) - \min_{\mathbf{x}} f(\mathbf{x}) \right) , \text{ for some } \mu > 0.
$$

Remark: For any function satisfying the PL condition, every stationary point is a global minimum.

Gradient Flow: The Gradient Flow is defined as:

$$
\frac{d\mathbf{x}(t)}{dt} = -\nabla f\left(\mathbf{x}(t)\right)
$$

Question: Can an optimal solution also be a maximum?

Answer: We usually consider the minima in an optimization problem. Observe that the problem of maximizing a function f is equivalent to the problem of minimizing *−f*.

Theorem 1. *Assume f*(*·*) *satisfies µ-gradient dominance condition. Gradient Flow for* $\min_w f(w)$ *satisfies:*

$$
f(\mathbf{x}_t) - \min_{\mathbf{x}} f(\mathbf{x}) \le \exp(-2\mu t) \left(f(\mathbf{x}_0) - \min_{\mathbf{x}} f(\mathbf{x})\right)
$$

Remark: Denote $a_k = f(\mathbf{x}_t) - \min_{\mathbf{x}} f(\mathbf{x})$.

Definition 7. *(Linear Rate): We say a^k converges linearly if there exist constants* $c > 0, q \in (0, 1]$ *satisfying*

$$
a_k \le c(1-q)^k \text{ for all } k. \tag{1}
$$

In this case, we call 1 *− q the linear rate of convergence.*

Equivalency of strong convexity: For any $\mathbf{x} \in C \subseteq \mathbb{R}^d$, $\mathbf{y} \in C \subseteq \mathbb{R}^d$, $\mathbf{z} \in \mathbb{R}^d$, and any $\alpha \in [0, 1]$:

$$
f((1-\alpha)\mathbf{x} + \alpha \mathbf{y}) \le (1-\alpha)f(\mathbf{x}) + \alpha f(\mathbf{y}) - \frac{\mu}{2}\alpha(1-\alpha)||\mathbf{y} - \mathbf{x}||^2.
$$
 (2)

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2.
$$
 (3)

$$
\mathbf{z}^{\top} \nabla^2 f(\mathbf{x}) \mathbf{z} \ge \mu \|\mathbf{z}\|^2 \tag{4}
$$

for some $\mu > 0$, while convexity is when $\mu = 0$.

Question: For a given problem, which inequality should be used to prove convexity and strong convexity?

Answer: If the function is continuous, then we can use the zero-order characterization. If the function is additionally (once) continuously differentiable, then we can also use the first-order characterization. If, additionally, the function is continuously differentiable up to the second-order, then we can also use the second-order characterization.

1.2 Proof: First Order Def. ([3\)](#page-3-0) \rightarrow **Second Order Def.** ([4\)](#page-3-1)

Denote $\mathbf{x}_{\alpha} := \mathbf{x} + \alpha \mathbf{z}$, and denote $g(\alpha) := f(\mathbf{x}_{\alpha})$. Then, by chain rule,

$$
g'(\alpha) = \frac{\partial f(\mathbf{x}_{\alpha})}{\partial \alpha}
$$

=
$$
\sum_{i=1}^{d} \frac{\partial f(\mathbf{x}_{\alpha})}{\partial \mathbf{x}_{\alpha}[i]} \frac{\partial \mathbf{x}_{\alpha}[i]}{\partial \alpha}
$$

=
$$
\sum_{i=1}^{d} \frac{\partial f(\mathbf{x}_{\alpha})}{\partial \mathbf{x}_{\alpha}[i]} \mathbf{z}[i]
$$

=
$$
\langle \nabla f(\mathbf{x}_{\alpha}), \mathbf{z} \rangle.
$$

Also,

$$
g''(\alpha) = \sum_{i=1}^{d} \frac{\partial}{\partial \alpha} \left(\frac{\partial f(\mathbf{x}_{\alpha})}{\partial \mathbf{x}_{\alpha}[i]} \right) \mathbf{z}[i]
$$

=
$$
\sum_{i=1}^{d} \left(\sum_{j=1}^{d} \frac{\partial^2 f(\mathbf{x}_{\alpha})}{\partial \mathbf{x}_{\alpha}[i] \partial \mathbf{x}_{\alpha}[j]} \frac{\partial \mathbf{x}_{\alpha}[j]}{\partial \alpha} \right) \mathbf{z}[i]
$$

=
$$
\sum_{i=1}^{d} \left(\sum_{j=1}^{d} \nabla^2 f(\mathbf{x}_{\alpha}[i,j]) \mathbf{z}[j] \right) \mathbf{z}[i]
$$

=
$$
\mathbf{z}^{\top} \nabla^2 f(\mathbf{x}_{\alpha}) \mathbf{z}.
$$

Continuing, we have that

$$
g'(\alpha) = \langle \nabla f(\mathbf{x}_{\alpha}), \mathbf{z} \rangle
$$

$$
g'(0) = \langle \nabla f(\mathbf{x}), \mathbf{z} \rangle
$$

and

$$
g''(\alpha) = \mathbf{z}^T \nabla^2 f(\mathbf{x}_{\alpha}) \mathbf{z}
$$
 (5)

$$
\mathbf{z}^T \nabla^2 f(\mathbf{x}) \mathbf{z} = g''(0) = \lim_{\alpha \to 0} \frac{g'(\alpha) - g'(0)}{\alpha} \tag{6}
$$

$$
= \lim_{\alpha \to 0} \frac{\langle \nabla f(\mathbf{x}_{\alpha}) - \nabla f(\mathbf{x}), \mathbf{z} \rangle}{\alpha} \tag{7}
$$

$$
= \lim_{\alpha \to 0} \frac{\langle \nabla f(\mathbf{x}_{\alpha}) - \nabla f(\mathbf{x}), \mathbf{x}_{\alpha} - \mathbf{x} \rangle}{\alpha^2}
$$
(8)

Remark: We get from [\(7](#page-4-0)) to ([8](#page-4-1)) by subbing in $z = \frac{x_\alpha - x}{\alpha}$

We further lower-bound $\langle \nabla f((x_{\alpha}) - \nabla f(\mathbf{x}), \mathbf{x}_{\alpha} - \mathbf{x} \rangle$ as follows:
By strong convexity: By strong convexity:

$$
f(\mathbf{x}_{\alpha}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}, \mathbf{x}_{\alpha} - \mathbf{x}) + \frac{\mu}{2} || \mathbf{x}_{\alpha} - \mathbf{x} ||^2 \tag{9}
$$

$$
f(\mathbf{x}) \ge f(\mathbf{x}_{\alpha}) + \langle \nabla f(\mathbf{x}_{\alpha}, \mathbf{x} - \mathbf{x}_{\alpha} \rangle + \frac{\mu}{2} ||\mathbf{x}_{\alpha} - \mathbf{x}||^2 \tag{10}
$$

Remark: Here, $f(\mathbf{x}_{\alpha})$ and $f(\mathbf{x})$ cancel each other out.

Adding the above two, ([9\)](#page-4-2) and [\(10](#page-4-3)), we get

$$
\langle \nabla f(\mathbf{x}_{\alpha}) - \nabla f(\mathbf{x}), \mathbf{x}_{\alpha} - \mathbf{x} \rangle \ge \mu \alpha^2 ||\mathbf{z}||^2 \tag{11}
$$

Combining [\(5](#page-4-4)), [\(10](#page-4-3)), [\(11\)](#page-4-5) yields

$$
\mathbf{z}^T \nabla^2 f(\mathbf{x}) \mathbf{z} \ge \mu ||\mathbf{z}||^2
$$

1.3 Proof First Order Def. (4) to Second Order Def. (3)

We denote $\mathbf{x}_{\alpha} := \mathbf{x} + \alpha(\mathbf{y} - \mathbf{x})$

Lemma:

$$
f(\mathbf{y}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \int_0^1 \int_0^\theta (\mathbf{y} - \mathbf{x})^T \nabla^2 f(\mathbf{x}_\alpha) (\mathbf{y} - \mathbf{x}) d\alpha d\theta
$$

see e.g., Lemma 3.11 of [[Sidford \(2024\)\]](#page-11-0) for the proof. It can be shown by (the variants of) the Fundamental Theorem of Calculus that we saw in Lecture 1. Starting from

$$
\mathbf{z}^T \nabla^2 f(\mathbf{x}) \mathbf{z} \ge \mu ||\mathbf{z}||^2, \forall \mathbf{z} \in \mathbb{R}^d.
$$

Plugging in $z \leftarrow y - x$ and $x \leftarrow x_\alpha$ we get,

$$
f(\mathbf{y}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \int_0^1 \int_0^{\theta} (\mathbf{y} - \mathbf{x})^T \nabla^2 f(\mathbf{x}_\alpha) (\mathbf{y} - \mathbf{x}) d\alpha d\theta
$$

\n
$$
\geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \int_0^1 \int_0^{\theta} \mu ||\mathbf{y} - \mathbf{x}||^2 d\alpha d\theta \text{ , by second-order characterization}\n= f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2, \text{ since } \int_0^{\theta} \mu ||\mathbf{y} - \mathbf{x}||^2 d\alpha = \mu ||\mathbf{y} - \mathbf{x}||^2 \theta\nand $\int_0^1 \theta d\theta = \frac{1}{2}.$
$$

1.4 Examples of functions satisfying the "Gradient Dominant" condition

Example 1: Squared loss

$$
\frac{1}{2}\mathbf{x}^2
$$

Example 2: Negative Entropy over the simplex $\{\mathbf{x} \in \mathbb{R}^d : \mathbf{x}[i] \geq 0, \sum_{i=1}^d \mathbf{x}[i] = 1\}$

$$
f(\mathbf{x}) = \sum_{i=1}^{d} \mathbf{x}[i]log \mathbf{x}[i]
$$

Example 3: Strongly convex functions

Theorem 2. *The µ-strong convexity implies the µ-Gradient Dominant condition, i.e.,* $||\nabla f(\boldsymbol{x})||_2^2 \geq 2\mu(f(\boldsymbol{x}) - min_x f(\boldsymbol{x}))$ *, for some* $\mu > 0$.

Definition 8. *(µ-strong convexity):*

For ∀x, y $f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2}$ $\frac{\mu}{2}||\boldsymbol{y}-\boldsymbol{x}||_2^2$

Proof. Let $h_{\mathbf{x}}(\mathbf{y}) := f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2}$ $\frac{\mu}{2}$ ||**y** – **x**||², then we get can get

$$
\min_{\mathbf{y}\in\mathbb{R}^d} f(\mathbf{y}) \ge \min_{\mathbf{y}\in\mathbb{R}^d} h_{\mathbf{x}}(\mathbf{y})
$$
\n(12)

Solving for $\min_{\mathbf{y}} h_{\mathbf{x}}(\mathbf{y})$ we get,

$$
\min_{\mathbf{y}} h_{\mathbf{x}}(\mathbf{y}) \equiv \min_{\mathbf{y} \in \mathbb{R}^d} f(\mathbf{x}) + \langle \nabla f(\mathbf{x}, \mathbf{y} - \mathbf{x}) + \frac{\mu}{2} || \mathbf{y} - \mathbf{x} ||_2^2
$$

Let

$$
\mathbf{y}^* \in \argmin_{\mathbf{x} \in \mathbb{R}^d} h_{\mathbf{x}}(\mathbf{y})
$$

Then,

$$
\nabla h(\mathbf{y}^*) = \nabla f(\mathbf{x}) + \mu(\mathbf{y}^* - \mathbf{x}) = 0 \in \mathbb{R}^d
$$

$$
\nabla f(\mathbf{x})
$$

$$
\Leftrightarrow \mathbf{y}^* - \mathbf{x} = -\frac{\nabla f(\mathbf{x})}{\mu}
$$

Using this we get,

$$
\min_{\mathbf{y}} h_{\mathbf{x}}(\mathbf{y}) \equiv f(\mathbf{x}) - \frac{||\nabla f(\mathbf{x})||_2^2}{\mu} + \frac{1}{2\mu} ||\nabla f(\mathbf{x})||_2^2
$$

$$
= f(\mathbf{x}) - \frac{1}{2\mu} ||\nabla f(\mathbf{x})||_2^2
$$

Solving for $\min_{\mathbf{y}} f(\mathbf{y})$ we get,

$$
\min_{\mathbf{y}} f(\mathbf{y}) \ge f(\mathbf{x}) - \frac{1}{2\mu} ||\nabla f(\mathbf{x})||_2^2
$$

$$
\Leftrightarrow ||\nabla f(\mathbf{x})||_2^2 \ge 2\mu(f(\mathbf{x}) - \min_{\mathbf{y}} f(\mathbf{y}))
$$

 \Box

2 Upper and Lower Bound of a function *f(y)*

2.1 L-smoothness and u-strong convexity

Definition 9. *(L-smoothness of a function): A differentiable function f is Lsmooth w.r.t. a norm ∥·∥, if ∀***x***,* **y**

$$
f(\mathbf{y}) \le f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||^2 \tag{13}
$$

where $L > 0$ *.*

Remark: L is a finite number otherwise if L is infinite this becomes a trivial upper bound of $f(\mathbf{y})$.

Definition 10. $(\mu\text{-strong convexity})$: A differentiable function $f: C \to \mathbb{R}$ defined *over a convex set C is* μ -strongly convex w.r.t. a norm $|| \cdot ||$ *if and only if for any* $\mathbf{x}, \mathbf{y} \in C$ *we have*

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} ||\mathbf{y} - \mathbf{x}||^2 \tag{14}
$$

for some $\mu > 0$ *.*

Remark: Smoothness inequality provides an upper bound. Strong convexity inequality provides a lower bound.

If a function $f(\mathbf{y})$ satisfies both conditions, i.e.,

$$
f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2 \ge f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|^2
$$

then the condition number of the Hessian is $\kappa =$ *L* $\frac{2}{\mu}$ ≥ 1.

In Figure [3](#page-8-0) $f(\mathbf{y})$ is lower bounded by the red curve found by applying μ -strong convexity and is upper bounded by the green curve found by applying the L-smoothness.

Definition 11. *(Second-order characterization of L-smoothness)*[1](#page-7-0) *A twice differentiable function* $f(\cdot) : C \to \mathbb{R}$ *defined over a set* $C \subseteq \mathbb{R}^d$ *is smooth w.r.t. a norm* $\| \cdot \|_2$ *, if and only if* \forall **x** $\in C$ *,*

$$
\mathbf{z}^\top \nabla^2 f(\mathbf{x}) \mathbf{z} \le L \|\mathbf{z}\|_2^2, \ \forall \mathbf{x} \in C, \forall \mathbf{z} \in \mathbb{R}^d.
$$

¹See e.g., Section 3.5 of Aaron Sidford "Optimization Algorithms" for the proof.

Figure 3: Visualization of lower and upper bounds

Remark: As $\nabla^2 f(\mathbf{x})$ is positive semi-definite, all of its eigenvalues λ are non-negative. The maximum eigenvalue satisfies $\lambda_{max}(\nabla^2 f(\mathbf{x})) \leq L, \forall \mathbf{x} \in C$. Also, if a function *f*(**x**) satisfies second-order *µ*-strong convexity e.g., $\mathbf{z}^T \nabla^2 f(\mathbf{x}) \mathbf{z} \ge \mu \| \mathbf{z} \|_2^2$, then the condition number of $\nabla^2 f(\mathbf{x})$ is $\kappa =$ *L* $\frac{2}{\mu}$ ≥ 1.

Example 1:

$$
\min_{\mathbf{x}\in\mathbb{R}^d} \frac{1}{2} \mathbf{x}^\top A \mathbf{x} - b^\top \mathbf{x}, \text{ where } A \succ 0.
$$

- Denote $\lambda_{\max}(A)$ the largest eigenvalue of A is also the smoothness constant L, i.e. $L = \lambda_{\text{max}}(A)$.
- Denote $\lambda_{\min}(A) > 0$ the smallest eigenvalue of A is also the μ -strong convexity constant μ , i.e. $\mu = \lambda_{\min}(A)$.

Example 2: $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^2$ is a smooth function as $\nabla^2 f(\mathbf{x}) = 1$ the Hessian is upper bounded by 1.

Example 3: $log(1+exp(-x))$ this is called logistic function and is a smooth function. The first derivative is

$$
f'(x) = -\frac{\exp(-x)}{1 + \exp(-x)} = -\frac{1}{1 + \exp(x)}
$$

And then, the second derivative $f''(x)$ is

$$
f''(x) = \frac{\exp(x)}{(1 + \exp(x))^2} \le 0
$$

because the denominator approaches infinity faster than the numerator does as $x \rightarrow$ *∞*.

Example 4: $max\{0, 1 - x\}$ is called Hinge Loss, and it is not a smooth function as it is not differentiable at 1. Verifying by computing the derivative at 1. $f'(1) = -1$ when $x \to 1^-$ while $f'(1) = 0$ when $x \to 1^+$.

Example 5: $f(x) = exp(-x)$ has $f''(x) = exp(-x)$ which is not bounded thus not a smooth function.

2.2 L-Lipschitz gradients

Theorem 3. Suppose that $f(\cdot)$ has *L*-Lipschitz gradients w.r.t. l_2 norm, i.e.,

$$
\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 \le L \|\mathbf{x} - \mathbf{y}\|_2
$$
\n(15)

for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$. Then, *L*-Lipschitz gradients implies *L*-smoothness, i.e.,

$$
f(\mathbf{y}) \le f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{x} - \mathbf{y}||_2^2, \tag{16}
$$

for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.

Remark: When the function is convex equation, the inverse is also true, i.e. Lsmoothness [\(16](#page-9-0)) implies L-Lipschitz gradients [\(15\)](#page-7-1) (verifying this in homework 1, problem 5)

3 The Upper Bound of Optimality Gap in Gradient Descent

Consider the problem of minimizing *f* using Gradient Descent i.e. $\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$.

Algorithm 1 Gradient Descent

1: Input: an initial point $\mathbf{x}_0 \in \text{dom } f$ and step size η . 2: **for** $k = 1$ to K **do** 3: $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k - \eta \nabla f(\mathbf{x_k})$ 4: **end for** 5: Return \mathbf{x}_{k+1} .

Theorem 4. *Assume* $f(\cdot)$ *is* μ *-gradient dominant and* L *-smooth, then gradient descent with* $\eta = \frac{1}{L}$ *L satisfies*

$$
f(\mathbf{x}_{k+1}) - \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \leq \left(1 - \frac{\mu}{L}\right)^k \left(f(\mathbf{x}_1) - \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})\right).
$$

Remark: Under the assumptions of theorem [\(4\)](#page-9-1), the convergerence rate of Gradient Descent is $(1 - \frac{1}{\kappa})$ *κ*).

Proof. Starting from L-smoothness inequality:

$$
f(\mathbf{y}) \le f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{L}{2} ||\mathbf{y} - \mathbf{x}||^2 \tag{17}
$$

Assigning:

$$
\mathbf{y} \leftarrow \mathbf{x}_{k+1} \\ \mathbf{x} \leftarrow \mathbf{x}_k
$$

and from gradient descent update step, we have:

$$
\mathbf{x}_{k+1} = \mathbf{x}_k - \eta \nabla f(\mathbf{x}_k)
$$

$$
\Leftrightarrow \mathbf{x}_{k+1} - \mathbf{x}_k = -\eta \nabla f(\mathbf{x}_k)
$$

Equation [\(17\)](#page-10-0) becomes:

$$
f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_{k}) + \langle \nabla f(\mathbf{x}_{k}), \mathbf{x}_{k+1} - \mathbf{x}_{k} \rangle + \frac{L}{2} ||\mathbf{x}_{k+1} - \mathbf{x}_{k}||^{2}
$$

\n
$$
= f(\mathbf{x}_{k}) + \langle \nabla f(\mathbf{x}_{k}), -\eta \nabla f(\mathbf{x}_{k}) \rangle + \frac{L}{2} ||-\eta \nabla f(\mathbf{x}_{k})||^{2}
$$

\n
$$
= f(\mathbf{x}_{k}) - \eta ||\nabla f(\mathbf{x}_{k})||^{2} + \frac{L\eta^{2}}{2} ||\nabla f(\mathbf{x}_{k})||^{2}
$$

\n
$$
= f(\mathbf{x}_{k}) - \left(\eta - \frac{L\eta^{2}}{2}\right) ||\nabla f(\mathbf{x}_{k})||^{2}
$$

\n
$$
= f(\mathbf{x}_{k}) - \left(\frac{1}{L} - \frac{L}{2L^{2}}\right) ||\nabla f(\mathbf{x}_{k})||^{2}, \text{ as } \eta = \frac{1}{L}
$$

\n
$$
= f(\mathbf{x}_{k}) - \left(\frac{1}{2L}\right) ||\nabla f(\mathbf{x}_{k})||^{2}
$$

\n
$$
\le f(\mathbf{x}_{k}) - \left(\frac{2\mu}{2L}\right) (f(\mathbf{x}_{k}) - \min_{\mathbf{x} \in R^{d}} f(\mathbf{x})), \text{ by PL-condition}
$$

Remark: The last inequality is obtained by manipulating the gradient dominant or PL condition as:

$$
||\nabla f(\mathbf{x}_k)||_2^2 \ge 2\mu \left(f(\mathbf{x}_k) - \min_{\mathbf{x} \in R^d} f(\mathbf{x}) \right) \iff -||\nabla f(\mathbf{x}_k)||_2^2 \le -2\mu \left(f(\mathbf{x}_k) - \min_{\mathbf{x} \in R^d} f(\mathbf{x}) \right)
$$

Thus:

$$
f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \left(\frac{\mu}{L}\right) (f(\mathbf{x}_k) - \min_{\mathbf{x} \in R^d} f(\mathbf{x}))
$$

\n
$$
\iff f(\mathbf{x}_{k+1}) - \min_{\mathbf{x} \in R^d} f(\mathbf{x}) \le (f(\mathbf{x}_k) - \min_{\mathbf{x} \in R^d} f(\mathbf{x})) - \left(\frac{\mu}{L}\right) (f(\mathbf{x}_k) - \min_{\mathbf{x} \in R^d} f(\mathbf{x}))
$$

\n
$$
\le \left(1 - \frac{\mu}{L}\right) (f(\mathbf{x}_k) - \min_{\mathbf{x} \in R^d} f(\mathbf{x}))
$$

\n
$$
\le \left(1 - \frac{\mu}{L}\right)^2 (f(\mathbf{x}_{k-1}) - \min_{\mathbf{x} \in R^d} f(\mathbf{x}))
$$

\n
$$
\le \left(1 - \frac{\mu}{L}\right)^k (f(\mathbf{x}_1) - \min_{\mathbf{x} \in R^d} f(\mathbf{x}))
$$

Remark: The optimality gap at the next iteration $k+1$ is bounded by $\left(1-\frac{\mu}{L}\right)$ $\frac{\mu}{L}$ times the current optimality gap at iteration *k*, and is bounded by $(1 - \frac{\mu}{L})$ $(\frac{\mu}{L})^k$ times the gap at iteration 1.

 \Box

Bibliographic notes

More to read on Chapter 3 and Chapter 4 of [[Drusvyatskiy \(2020\)\]](#page-11-1) and Chapter 3 and Chapter 4.2 of [[Sidford \(2024\)\]](#page-11-0) and Chapter 6 of [[Vishnoi \(2021\)\]](#page-11-2)

References

- [Drusvyatskiy (2020)] Dmitriy Drusvyatskiy. Convex Analysis and Nonsmooth Optimization. 2020.
- [Sidford (2024)] Aaron Sidford. Optimization Algorithms. 2024.
- [Vishnoi (2021)] Nisheeth K. Vishnoi. Algorithms for Convex Optimization. Cambridge University Press, 2021