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Lecture 2: Gradient Flow and Convex Analysis I

1 Gradient Descent and Gradient Flow
A formal specification of the Gradient Descent (GD) algorithm follows.

Algorithm 1 Gradient Descent
1: Input: an initial point x0 ∈ dom f and step size η.
2: for k = 1 to K do
3: xk+1 ← xk − η∇f (xk)

4: end for
5: Return xk+1.

Remark: The parameter η is called the step size or learning rate.

In order to better understand gradient descent, let’s consider the curve that at
each instant proceeds in the direction of steepest descent of f . For this method, let’s
consider a function f : X → R, the method of gradient flow starts at some initial
point x0 ∈ X and seek to find the optimum of f by following the integral curve
defined by the following differential equations.

Definition 1. (Gradient Flow): Let f : Rd → R be a smooth function. Gradient
flow is a smooth curve x : R→ Rd such that

dx(t)

dt
= −∇f

(
x(t)

)
1.1 Insights into the Algorithm
Gradient Flow is Gradient Descent as η → 0. Consider the update step

xk+1 = xk − η∇f(xk),

then

lim
η→0

xk+1 − xk

η
= lim

η→0
−∇f(xk)

⇔ dx

dt
= −∇f(x).
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Consider applying Gradient Flow to minx∈Rd f(x), that is

dx(t)

dt
= −∇f

(
x(t)

)
.

Let

x ≜



x[1]

x[2]
...

x[i]
...

x[d]


∈ Rd.

Then,

df

dt
=

d∑
i

∂f

∂x[i]

∂x[i]

∂t
, by Chain rule

=

⟨
∇f(x), dx(t)

dt

⟩
= ⟨∇f(x),−∇f(x)⟩ , by Gradient Flow
= −||∇f(x)||22
≤ 0.

Remarks:

• Thus, as long as ∇f(x) ̸= 0, the function is always decreasing. This means
gradient flow is always making progress as long as it is not stationary. This
does not necessarily imply that it finds the optimal point.

• We are using the differential equation of gradient flow as as a continuous analog
for the gradient descent update process. The gradient descent algorithm is used
to simulate the dynamics of gradient flow.

1.2 Gradient Dominant Condition
Definition 2. (Gradient Dominant or Polyak-Lojasiewicz (PL) Condition):
We say a function f : Rd → R satisfies the “Gradient Dominance” condition if
∀x ∈ Rd

||∇f(x)||22 ≥ 2µ

(
f(x)−min

x
f(x)

)
, for some µ > 0.

We say that f is µ-gradient dominant.
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Definition 3. (Stationary Point): Given a differentiable function f such that
f : Rd → R and x ∈ Rd, a stationary point is a point such that

∇f(x) = 0 ∈ Rd.

Remark: For any function satisfying the P.L. condition, every stationary point is a
global optimum point.

Proof. By definition,

f(x)−min
x

f(x) ≥ 0.

For a stationary point x ∈ Rd,

∇f(x) = 0⇒ ||∇f(x)||22 = 0.

Thus, for any function f satisfying the P.L condition with x as a stationary point,

0 ≥ 2µ

(
f(x)−min

x
f(x)

)
≥ 0, µ > 0,

which is only true when equality holds, by squeeze theorem. Thus,

f(x)−min
x

f(x) = 0⇔ x is a global optimum point.

Example 1: All strongly convex functions

Example 2: f(x) = x2 + 2 sin2(x)

Remark: For simplicity, we can define f∗ := minx f(x). Thus, we can rewrite the
optimality gap as f(xt)− f∗.

Consequence: Suppose that f is additionally µ-gradient dominant. Then, taking
the derivative of an optimality gap we get

d(f(xt)− f∗)

dt
=

df(xt)

dt
, as f∗ is a constant

= −||∇f(xt)||22 , by Gradient Flow

≤ −2µ
(
f(xt)−min

x
f(x)

)
, since f is µ-gradient dominant

(1)
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which implies that

f(xt)−min
x

f(x) ≤ e−2µt

(
f(x0)−min

x
f(x)

)
(2)

for µ-gradient dominant functions, where x0 is the initial point.

Remark: As f(xt) −minx f(x) is the gap at t and f(x0) −minx f(x) is the initial
gap, the above inequality implies that the optimality gap decays exponentially with
time.

Why does (6) imply (7)? Let

δt := f(xt)− f∗.

Then, inequality (6) can be expressed as
dδt
dt
≤ −2µδt

⇔ dδt
δt
≤ −2µdt

⇒
∫ δt

δ0

dδt
δt
≤

∫ t

0

−2µdt

⇔ ln(δt)− ln(δ0) ≤ −2µt , since d

dx
ln x =

1

x
.

Therefore,
δt
δ0
≤ exp(−2µt)

⇔ δt ≤ δ0exp(−2µt)

Plugging back in, we get

f(xt)−min
x

f(x) ≤ exp (−2µt)
(
f(x0)−min

x
f(x)

)

2 Convex Sets
Definition 4. (Convex Combination): A linear combination is called convex if
the coefficients of the variables are non-negative and sum to 1. In other words, given
any finite number of points xi, i ∈ [1...n] in a real vector space, a convex combination
of these points has the form:

α1x1 + α2x2...+ αnxn,

where the coefficients αi satisfy αi ≥ 0, ∀i and
∑n

i=1 αi = 1.
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Definition 5. (Convex Set): A set C ⊆ Rd is called convex if for any x,y ∈ C

and any α ∈ [0, 1], we have
αx+ (1− α)y ∈ C.

Here the above expression is defined as the Convex combination of x and y.

Figure 1: Difference between convex and non convex set

Remark: Let xα = αx+(1−α)y. Observe that xα is a parametrization of the points
of the line segment between x and y. We can see from the above figure that the point
xα always lies on the line formed between x and y. Hence, if xα lies inside the set
as in the left figure, the set is convex. Otherwise, if any point on the line formed
between x and y lies outside the set as in the right figure, then ∃α ∈ [0, 1] such that
xα /∈ C and hence the set is non-convex.

3 Convex Functions
Definition 6. (Zero Order Characterization of Convex Functions): A func-
tion f : C → R defined over a convex set C is called convex if, for any x,y ∈ C and
any α ∈ [0, 1], the following inequality holds

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y).

Figure 2: Zero Order Characterization
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Remark: Let xα = αx + (1 − α)y be the parametrization of the points of the line
segment between x and y. Similarly, αf(x) + (1 − α)f(y) is the parametrization of
the points on line segment between f(x) and f(y). The zero-order characterization
implies that a function is convex if the function value at any convex combination of
x and y is always less equal than the convex combination of the function values at x

and y, as can be seen in Figure 2. In other words, the line segment connecting f(x)

and f(y) lies always above the function curve defined between x and y.

Definition 7. (First Order Characterization of Convex Functions): A dif-
ferentiable function f : C → R defined over a convex set C is called convex if and
only if, for any x,y ∈ C

f(y) ≥ f(x) + ⟨∇f(x), (y − x)⟩.

Figure 3: First Order Characterization

Remark: Observe that if we take a tangent at the point x, we get the line equation
f(x)+⟨∇f(x), (y−x)⟩, for some y ∈ C. The first-order characterization implies that
a function is convex, if the function always dominates its first order (linear) Taylor
approximation.

Definition 8. (Second Order Characterization of Convex Functions): A
twice-differentiable function f : C → R defined over a convex set C is convex if and
only if, for any x ∈ C, the Hessian matrix evaluated at x is positive semi-definite,
i.e.

∇2f(x) ⪰ 0.
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3.1 Examples of Convex Functions:
Example 1: Linear Functions

f
(
αx+ (1− α)y

)
= αf(x) + (1− α)f(y)

A linear function is also a concave function, i.e.

f
(
αx+ (1− α)y

)
≥ αf(x) + (1− α)f(y).

Example 2: Quadratic Functions

f(x) =
1

2
xTAx− bTx, λmin(A) ≥ 0

Example 3: Negative Entropy

F (x) =
d∑

i=1

xi log xi,

where x ∈ Rd
>0 (i.e., each element xi of the vector x ∈ Rd satisfies xi > 0 for all

i ∈ [d]).
Example 4: Non-negative weighted sum of convex functions

f(x) =
n∑

i=1

αifi(x), αi ≥ 0, ∀i

Example 5: Sum of squared loss

F (x) =
n∑

i=1

1

2

(
yi − x⊤zi

)2

4 Strongly Convex Functions
Definition 9. (Zero Order Characterization of µ-Strongly Convex Func-
tions): A function f : C → R defined over a convex set C is µ-strongly convex w.r.t.
a norm || · || if, for any x,y ∈ C and any α ∈ [0, 1] we have

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y)− µ

2
α(1− α)||y − x||2,

for some µ > 0.
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Remark 1: We know that µ > 0, α ∈ [0, 1], ||y−x||2 ≥ 0, ∀x,y ∈ C. Hence, we have

(1− α)f(x) + αf(y)− µ

2
α(1− α)||y − x||2 ≤ (1− α)f(x) + αf(y).

Thus, when f is strongly convex we get

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y).

Therefore, strongly convexity implies convexity.

Figure 4: Zero Order Characterization

Remark 2: From the graph we can see that strong convexity just suggests that there
will always be a difference of at least µ

2
α(1− α)||y − x||2 thus imposing a restriction

and hence ensuring strong convexity. This also implies regular convexity. When α = 0

or α = 1 we get the intersection points and thus the µ term will not impact the value.
However, for any value between them, there will always be at least a difference of
µ
2
α(1 − α)||y − x||2. This is why when we apply the same for a linear function, it

fails because a linear function adheres to the inequality of normal convexity. The
minimum gap is not followed by the linear function and hence a linear function is not
strongly convex.

Definition 10. (First Order Characterization of µ-Strongly Convex Func-
tions): A differentiable function f : C → R defined over a convex set C is µ-strongly
convex w.r.t. a norm || · || if and only if for any x,y ∈ C we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
||y − x||2,

for some µ > 0.
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Figure 5: First Order Characterization

Remark: We have the line f(x) + ⟨∇f(x),y− x⟩, hence at y we for sure know that
f(y) ≥ f(x) + ⟨∇f(x),y − x⟩ but strong convexity is defined when there is an extra
amount of gap that is needed. That extra gap is at y and is equal to µ

2
||y− x||2. This

implies an extra parameter that ensures that it always is convex. It ensures a strong
convexity for any µ > 0.

Definition 11. (Second Order Characterization of µ-Strongly Convex Func-
tions): A twice differentiable function f : C → R defined over a convex set C is
µ-strongly convex w.r.t. a norm || · || if and only if for any x ∈ C we have

y⊤∇2f(x)y ≥ µ∥y∥2

for some µ > 0 and any y ∈ Rd.

Remarks:

1. Here || · || can be any norm and not restricted to l2 norm. There are benefits of
using non-Euclidean norm that will be more apparent in the later lectures.

2. Using the l2 norm, the second-order characterization implies that λmin(∇2f(x)) ≥
µ > 0.

3. Any strongly convex function is also always convex but the inverse is generally
not true.

4. We generally use the second order characterization due to its relative ease in
use as well as computation.

Theorem 1. The µ-strong convexity implies the µ-Gradient Dominant condition, i.e.,
∀x ∈ Rd,

||∇f(x)||22 ≥ 2µ

(
f(x)−min

x
f(x)

)
, for some µ > 0.
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4.1 Equivalency of the strong convexity characterizations
For any x ∈ C ⊆ Rd, y ∈ C ⊆ Rd, z ∈ Rd, and any α ∈ [0, 1], the three expressions
below are equivalent (assuming that f is twice continuously differentiable):

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y)− µ

2
α(1− α)||y − x||2 (zero− order)

(3)

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
||y − x||2 (first− order)

(4)
z⊤∇2f(x)z ≥ µ∥z∥2 (C is open) (second− order)

(5)

for some µ > 0, while convexity is when µ = 0.

4.2 Proof of equivalency of the strong convexity
4.2.1 First Order Definition → Zero Order Definition

Denote xα := x+ α(y − x). Then,

f(y) ≥ f(xα) + ⟨∇f(xα),y − xα⟩+
µ

2
∥y − xα∥2

= f(xα) + (1− α)⟨∇f(xα),y − x⟩+ µ

2
(1− α)2∥y − x∥2

and

f(x) ≥ f(xα) + ⟨∇f(xα),x− xα⟩+
µ

2
∥x− xα∥2

= f(xα)− α⟨∇f(xα),y − x⟩+ µ

2
(1− α)2∥y − x∥2

Since α(1− α)2 + α2(1− α) = α(1− α), adding a α multiple of the first equation to
the 1− α multiple of the second equation completes the proof.

4.2.2 Zero Order Definition → First Order Definition

Denote xα := x+α(y−x). From f (xα) ≤ (1−α)f(x)+αf(y)− µ
2
α(1−α)||y−x||2,

we have

f(y) ≥
f (xα)− (1− α)f(x) + µ

2
α(1− α)||y − x||2

α

= f(x) +
µ

2
(1− α)∥y − x∥2 + f(xα)− f(x)

α
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Let α→ 0, then
f(xα)− f(x)

α
=
⟨∇f(x),y − x⟩

1
by the L’Hopital’s rule and the chain rule we get the following:

f(y) ≥ f(x) +
µ

2
∥y − x∥2 + ⟨∇f(x),y − x⟩

4.2.3 Second Order Definition → First Order Definition

Denote xα := x+ α(y − x). We know that:

f(y) = f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

∫ θ

0

(y − x)⊤∇2f(xα)(y − x)dαdθ.

Starting from
z⊤∇2f(x)z ≥ µ∥z∥2, ∀z ∈ Rd.

Now taking z := y − x and x := xα we get

f(y) = f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

∫ θ

0

(y − x)⊤∇2f(xα)(y − x)dαdθ

≥ f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

∫ θ

0

µ||y − x||2dαdθ

= f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

µ||y − x||2θdθ

and since we know
∫ 1

0
θdθ = 1

2
hence,

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
∥y − x∥2

4.2.4 First Order Definition → Second Order Definition

Denote xα := x+ αz, and denote g(α) := f(xα).
Then, by chain rule, we have

g
′
(α) =

∂f(xα)

∂α

=
d∑

i=1

∂f(xα)

∂xα[i]

∂xα[i]

∂α

=
d∑

i=1

∂f(xα)

∂xα[i]
z[i]

= ⟨∇f(xα), z⟩
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and

g
′′
(α) =

d∑
i=1

∂

∂α

(
∂f(xα)

∂xα[i]

)
z[i]

=
d∑

i=1

 d∑
i=1

∂2f(xα)

∂xα[i]∂xα[i]

∂xα[i]

∂α

 z[i]

=
d∑

i=1

 d∑
i=1

∇2f(xα)[i, j] z[i]

 z[i]

= z⊤∇2f(xα)z.

Additionally,

g
′′
(0) = lim

α→0

g
′
(α)− g

′
(0)

α

= lim
α→0

⟨∇f(xα)−∇f(x), z⟩
α

= lim
α→0

⟨∇f(xα)−∇f(x),xα − x⟩
α2

We have that z = xα−x
α

. We further lower-bound ⟨∇f(xα)−∇f(x),xα−x⟩ as follows:
By strong convexity:

f(xα) ≥ f(x) + ⟨∇f(x),xα − x⟩+ µ

2
∥xα − x∥2 (6)

f(x) ≥ f(xα) + ⟨∇f(xα),x− xα⟩+
µ

2
∥xα − x∥2 (7)

Adding the above two, we get

⟨∇f(xα)−∇f(x),xα − x⟩ ≥ µ∥xα − x∥2 = µα2∥z∥2. (8)

Combining the last three inequalities, we get the following:

z⊤∇2f(x)z ≥ µ∥z∥2.

We can see that we proved all the possible pairs for the equivalencies.

Bibliographic notes
More prelimiaries of calculus and linear algebra can be found in Chapter 1 of [Drusvyatskiy (2020)],
Chapter 2 of [Vishnoi (2021)] and Chapter 3 and Chapter 4 of [Aaron Sidford (2024)].
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