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Lecture 17: Acceleration via Chebyshev Polynomial

1 Gradient Descent in Strongly Convex Quadratic
Problems

Let’s recall the general quadratic form from HW1

min
x∈Rd

1

2
x⊤Ax− b⊤x, where A ≻ 0,

which can be demonstrated to be equivalent to the problem

min
x∈Rd

n∑
i=1

1

2
(yi − x⊤zi)

2 +
γ

2
∥x∥22, where γ > 0.

Let f(x) = 1
2
x⊤Ax− b⊤x, then ∇f(x) = Ax− b. Consider

x∗ = argmin
x∈Rd

1

2
x⊤Ax− b⊤x.

Then, x∗ satisfies
Ax∗ − b = 0 ⇔ x∗ = A−1b.

Question: Now that we have obtained a closed-form solution to this problem, why
do we need to concern ourselves with Gradient Descent?
Answer: Computing A−1 for A ∈ Rd×d is O(d3) in time complexity.

The Gradient Descent step in this problem is given as:

xk+1 = xk − η∇f(xk)

= xk − η(Axk − b)

The computation of Axk − b is of complexity O(d2) (can be better if A is sparse).
There are O(log 1

ϵ
) number of iterations. That makes the time complexity of Gradient

Descent O(d2log(1
ϵ
)) which is better than the closed-form solution computation for

large d.
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Coming back to the problem,

xk+1 = xk − η∇f(xk)

= xk − η(Axk − b)

= xk − η(Ax− Ax∗)

⇔ xk+1 − x∗ = (Id − ηA)(xk − x∗)

= (Id − ηA)k(x1 − x∗)

Note that (Id − ηA)k is a k-th degree polynomial of matrix A. Before proceeding
further, let’s introduce the concept of the spectral norm of a matrix.

Definition 1. (Spectral Norm of a Matrix) : For a matrix B ∈ Rm×n its spectral
norm ∥B∥2 is defined as the largest singular value of B, that is

∥B∥2 := σmax (B) = max
x:∥x∥2=1

∥Bx∥2.

Fact: ∥B∥2 =
√

λmax(B⊤B)

For a square matrix B ∈ Rn×n, if B is diagonalizable, i.e.,

∃ U, Λ ∈ Rn×n, U⊤U = In,Λ diagonal s.t.

B = UΛU−1,

then
∥B∥2 = max

(∣∣λmin(B)
∣∣ ,∣∣λmax(B)

∣∣) .
Observe that

B⊤B =
(
UΛU−1

)⊤ (
UΛU−1

)
= U−⊤ΛU⊤U︸ ︷︷ ︸

Id

ΛU−1

= U−⊤Λ2U−1

= UΛ2U−1.

Example: Let

Λ =

[
1 0

0 −7

]
⇒ Λ2 =

[
1 0

0 49

]
.

Therefore,

∥B∥2 =
√
49.

2



Now, we had

xk+1 − x∗ = (Id − ηA)(xk − x∗).

Taking the L2 norm of both sides, we obtain:

∥xk+1 − x∗∥2 = ∥(Id − ηA)(xk − x∗)∥2
≤ ∥Id − ηA∥2∥xk − x∗∥2

Now, let’s analyze the matrix Id−ηA. Since A ≻ 0, A is diagonalizable as A = UΛU⊤

where U is an orthonormal matrix and Λ is a diagonal matrix whose entries are the
eigenvalues of A.

Id − ηA = UU⊤ − UΛU⊤

= U(Id − ηΛ)U⊤

It can be seen that the eigenvalues of Id−ηA are given by the entries of Id−ηΛ which
are equal to

(
1− ηλi(A)

)d
i=1

. Thus,

∥xk+1 − x∗∥2 ≤ ∥Id − ηA∥2∥xk − x∗∥2
= max

i∈[d]

∣∣1− ηλi(A)
∣∣ ∥xk − x∗∥2

Let µ = λmin(A) and L = λmax(A). Now, the previous inequality holds for any η. We
would like to choose such a value for η as to tighten down the upper bound on the
R.H.S., i.e. :

min
η

max
i∈[d]

∣∣1− ηλi(A)
∣∣

Thus, we have a min-max problem.

1.1 Finding the Optimal η
Now, we have that:

min
η

max
i∈[d]

∣∣1− ηλi(A)
∣∣ ≤ min

η
max
λ∈[µ,L]

|1− ηλ|

For a fixed value of η, let’s analyze the function |1− ηλ| to identify where the max
lies and what it evaluates to.

|1− ηλ| =

1− ηλ , if λ ≤ 1
η

ηλ− 1 , if λ ≥ 1
η
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This is a scaled and shifted version of the V-shaped modulus function, with the tip
of the V at 1

η
. Now, depending on where 1

η
lies w.r.t. µ and L, we can have three cases:

(i) 1
η
≤ µ, (ii) µ ≤ 1

η
≤ L, (iii) L ≤ 1

η

Case 1: 1
η
≤ µ. Since λ ∈ [µ, L], λ ≥ 1

η
. Therefore,

|1− ηλ| = ηλ− 1.

The max occurs at λ = L, that is

max
λ∈[µ,L]

|1− ηλ| = ηL− 1.

The max evaluates out to be ηL− 1

However,

1

η
≤ µ ≤ L =⇒ 1− ηµ ≤ 0 ≤ ηL− 1.

Therefore:

max
λ∈[µ,L]

|1− ηλ| = ηL− 1

= max(1− ηµ, ηL− 1).

Case 2: µ ≤ 1
η
≤ L. Since λ ∈ [µ, L], λ ≥ 1

η
. Therefore,

|1− ηλ| = ηλ− 1
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The max occurs at the boundaries, either λ = L or λ = µ.

max
λ∈[µ,L]

|1− ηλ| = max(|1− ηµ| ,|ηL− 1|).

However,

µ ≤ 1

η
≤ L =⇒ 0 ≤ 1− ηµ, 0 ≤ ηL− 1

=⇒ |1− ηµ| = 1− ηµ, and |ηL− 1| = ηL− 1.

Therefore:

max
λ∈[µ,L]

|1− ηλ| = max(1− ηµ, ηL− 1).

Case 3 (Similar to Case 1): L ≤ 1
η
. Since λ ∈ [µ, L], λ ≤ 1

η
. Therefore,

|1− ηλ| = 1− ηλ.

The max occurs at λ = µ.

max
λ∈[µ,L]

|1− ηλ| = 1− ηµ.

The max evaluates out to be 1− ηµ. However,

µ ≤ L ≤ 1

η
=⇒ 1− ηµ ≥ 0 ≥ ηL− 1.

Therefore:

max
λ∈[µ,L]

|1− ηλ| = 1− ηµ

= max(1− ηµ, ηL− 1).

As it turns out, in all cases the max evaluates out to be:

max
λ∈[µ,L]

|1− ηλ| = max(1− ηµ, ηL− 1).

Therefore, the min-max problem evaluates to:

min
η

max
λ∈[µ,L]

|1− ηλ| = min
η

max(1− ηµ, ηL− 1).

Now, let’s see from the η-player’s perspective. The value of η that minimizes this
max function happens when the two lines cross each other:

5



1− ηµ = ηL− 1

⇔ η =
2

µ+ L

For the optimal η = 2
L+µ

,

∥xk+1 − x∗∥2 ≤ max
i∈[d]

|1− ηλi| ∥xk − x∗∥2

≤ max
λ∈[µ,L]

|1− ηλ| ∥xk − x∗∥2

≤ max
λ∈[µ,L]

∣∣∣∣1− 2λ

L+ µ

∣∣∣∣ ∥xk − x∗∥2

=

(
1− 2µ

L+ µ

)
∥xk − x∗∥2 (piecewise linear function)

=

(
1− 2µ

L+ µ

)k

∥x1 − x∗∥2 (by recursive expansion)

Note that
∣∣∣1− 2λ

L+µ

∣∣∣ is a piece-wise linear function. The argmax of
∣∣∣1− 2λ

L+µ

∣∣∣ would
be either µ or L and it turns out it would be µ in this case. That how we obtained
maxλ∈[µ,L]

∣∣∣1− 2λ
L+µ

∣∣∣ = (1− 2µ
L+µ

)
.
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We can get convergence rate as follows:

∥xk+1 − x∗∥2 ≤
(
1− 2µ

L+ µ

)k

∥x1 − x∗∥2

=

(
1− 2

κ+ 1

)k

∥x1 − x∗∥2

=

(
1−Θ

(
1

κ

))k

∥x1 − x∗∥2

where κ := L
µ

is the condition number.

2 Chebyshev Polynomials
Consider any algorithm in the form:

xk+1 = x1 + span{∇f(x1),∇f(x2), . . . ,∇f(xk)}. (1)

Lemma 1. Consider solving minx
1
2
x⊤Ax− b⊤x. Algorithms in the form of (1) has

the following dynamics:
xk+1 − x∗ = Pk(A)(x1 − x∗),

where Pk(A) is a k-degree polynomial of A and P0(A) = 1.

Proof. We will use induction.
Base case:

x1 − x∗ = 1(x1 − x∗)

= P0(A)(x1 − x∗),

where P0(A) = 1. Suppose at k, we have

xk − x∗ = Pk−1(A)(x1 − x∗).

Consider k + 1,

xk+1 − x∗ = x1 − x∗ +
k∑

j=1

αj∇f(xj)︸ ︷︷ ︸
span of gradients

,

where {αj} are some co-efficients.
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We can expand as follows:

xk+1 − x∗ = x1 − x∗ +
k∑

j=1

αj∇f(xj)

= x1 − x∗ +
k∑

j=1

αj(Axj − Ax∗)

= x1 − x∗ + A

k∑
j=1

αj(xj − x∗)

= x1 − x∗ + A
k∑

j=1

αjPj−1(A)(x1 − x∗)

= (Id + A
k∑

j=1

αjPj−1(A))(x1 − x∗)

= Pk(A)(x1 − x∗).

Here, given

∥xk+1 − x∗∥2 ≤ ∥PK(A)∥2∥x1 − x∗∥2

our goal is to find the best K-degree polynomial:

P ∗
K = argmin

P∈PK ;P0(·)=1

max
A∈M

∥PK(A)∥2,

where the set M := {A ≻ 0 : λmin(A) = µ, λmax(A) = L }. The solution is a
“scaled-and-shifted” Chebyshev Polynomial.

Definition 2. (K-degree Chebyshev Polynomial of the first kind) We denote ΦK(·)
the degree-K Chebyshev polynomial of the first kind, which is defined by:

ΦK(x) =


cos(K arccos(x)) if x ∈ [−1, 1],

cosh(K arccosh(x)) if x > 1,

(−1)Kcosh(K arccosh(x)) if x < 1.

Here is an equivalent definition:

Φ0(x) = 1,

Φ1(x) = x,

Φk(x) = 2xΦk−1(x)− Φk−2(x), for k ≥ 2
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Consider a scaled-and-shifted K-degree Chebyshev Polynomial

Φ̄K(λ) :=
ΦK(h(λ))

ΦK(h(0))
,

where h(·) is the mapping h(λ) := L+µ−2λ
L−µ

.

Observe that the mapping h(·) maps all λ ∈ [µ, L] into the interval [−1, 1]:

• h(µ) = L+µ−2µ
L−µ

= 1.

• h(L) = L+µ−2L
L−µ

= −1.

As a result, by the definition of K-degree Chebyshev Polynomial of the first kind, we
have

ΦK(h(λ)) ≤ 1.

Also, we have
h(0) =

L+ µ

L− µ
= 1 +

2µ

L− µ
> 1,

so by the properties of Chebyshev Polynomial, ΦK(h(0)) would grow exponentially.

Lemma 2. (see e.g., Lemma 3 in [Wang (2023)] and Section 2.3 in [dAspremont et al. (2021)])
For any positive integer K, we have

max
λ∈[µ,L]

∣∣Φ̄K(λ)
∣∣ ≤ 2

(
1− 2√

κ+ 1

)K

.

Proof. Observe that the numerator of Φ̄K(λ) =
ΦK(h(λ))
ΦK(h(0))

satisfies |ΦK(h(λ))| ≤ 1, since
h(λ) ∈ [−1, 1] for λ ∈ [µ, L] and that the Chebyshev polynomial satisfies |ΦK(·)| ≤ 1

when its argument is in [−1, 1] by the definition. It remains to bound the denominator,

which is ΦK(h(0)) = cosh

(
K arccosh

(
L+µ
L−µ

))
. Since

arccosh
(

L+µ
L−µ

)
= log

(
L+µ
L−µ

+

√(
L+µ
L−µ

)2
− 1

)
= log(θ), where θ :=

√
L+

√
µ√

L−√
µ
,

we have

ΦK(h(0)) = cosh

(
K arccosh

(
L+µ
L−µ

))
= exp(K log(θ))+exp(−K log(θ))

2
= θK+θ−K

2
≥ θK

2
.

Combing the above inequalities, we obtain the desired result:

max
λ∈[µ,L]

∣∣Φ̄K(λ)
∣∣ = max

λ∈[µ,L]

∣∣∣∣ΦK(h(λ))

ΦK(h(0))

∣∣∣∣ ≤ 2

θK
= 2

(
1− 2

√
µ

√
L+

√
µ

)K

= O


1−Θ

(√
µ

L

)K
 .
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We have derived the dynamic of gradient descent as

∥xK+1 − x∗∥2 ≤
(
1− 2

κ+ 1

)K

∥x1 − x∗∥2.

For Chebyshev method, we have

∥xK+1 − x∗∥2 ≤ min
P∈PK ;P0(·)=1

max
A∈M

∥PK(A)∥2∥x1 − x∗∥2

≤ 2

(
1− 2√

κ+ 1

)K

∥x1 − x∗∥2.

where the set M := {A ≻ 0 : λmin(A) = µ, λmax(A) = L }.

For example, suppose κ = 100. Then, 1− 2
κ+1

∼= 0.98 and 1− 2√
κ+1

∼= 1− 2
11

≈ 0.8.

Having a dependency of square root of condition number κ is considered to be better
than having a linear dependency of the condition number because 1− 2√

κ+1
≤ 1− 2

k+1

as κ ≥ 1.

Question: What is the optimal algorithm implied by the scaled-and-shifted K-degree
Chebyshev polynomial?
Answer:

xK+1 = xK − 4θK
L− µ

∇f(xK) + βK(xK − xK−1),

where βK is called the momentum parameter and βK(xK − xK−1) is the momentum
term (weighted average of previous gradients).
If we set a constant step size for gradient descent, we have

xk+1 − x∗ = (Id − ηA)(Id − ηA) . . . (Id − ηA)(x1 − x∗).

Question: What if we specify a scheme of non-constant step size in GD?

xk+1 = xk − ηk∇f(xk).

Answer: Here, we have xk+1 = xk−ηk(Axk−Ax∗) ⇒ xk+1−x∗ = (Id−ηkA)(xk−x∗).
The dynamic becomes

xk+1 − x∗ = (Id − ηkA)(Id − ηk−1A) . . . (Id − η1A)(x1 − x∗).
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Hence
∥xK+1 − x∗∥2 ≤ max

i∈[d]

∣∣∣ΠK
k=1(1− ηkλi)

∣∣∣ ∥x1 − x∗∥2.

Chebyshev roots are given as

r
(K)
k :=

L+ µ

2
− L− µ

2
cos

(
(k − 1

2
π

K

)
and

Φ̄k(r
(K)
k ) = 0.

The equivalent form of Φ̄K(λ) is given as

Φ̄K(λ) = ΠK
k=1

(
1− λ

r
(K)
k

)
.

The convergence rate thus becomes

∥xK+1−x∗∥2 ≤ max
i∈[d]

∣∣∣ΠK
k=1(1− ηkλi)

∣∣∣ ∥x1−x∗∥2 = max
i∈[d]

Φ̄K(λi) ≤ 2

(
1− 2√

κ+ 1

)K

∥x1−x∗∥2,

where the inequality is by Lemma 2.
To go beyond quadratic, we have the following two results:

Negative result: Gradient descent with Chebyshev step size fails to converge
[Agarwal et al. (2021)]

f(x) = log cosh x+ 0.01x2.

Positive result: Gradient descent with a scheme of non-constant step size con-
verges at a rate [Altschuler et al. (2023)]

∥xk+1 − x∗∥2 ≤

(
1−Θ

(
1

κ0.7864

))k

∥x1 − x∗∥2.

Bibliographic notes
More prelimiaries of calculus and linear algebra can be found in Chapter 1 of [Drusvyatskiy (2020)]
and Chapter 2 of [Vishnoi (2021)].

References
[Drusvyatskiy (2020)] Dmitriy Drusvyatskiy. Convex Analysis and Nonsmooth Opti-

mization. 2020.

11
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