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Lecture 17: Acceleration via Chebyshev Polynomial

1 Gradient Descent in Strongly Convex Quadratic
Problems

Let’s recall the general quadratic form from HW1

o1
min —z' Az — bz, where A = 0,
z€R4

which can be demonstrated to be equivalent to the problem

1
min §(yl —z' %)+ %Hx”%, where v > 0.

Let f(z) = 32" Az — bz, then V f(z) = Az — b. Consider

1
z* = argmin —z' Az — b z.
zER?

Then, z* satisfies

Ar* —b=0< 2" = A"'D.

Question: Now that we have obtained a closed-form solution to this problem, why
do we need to concern ourselves with Gradient Descent?
Answer: Computing A~! for A € R™? is O(d?) in time complexity.

The Gradient Descent step in this problem is given as:

Tpy1 = T — NV f(xk)
=T — n(Axk - b)

The computation of Az, — b is of complexity O(d?) (can be better if A is sparse).
There are O(log?) number of iterations. That makes the time complexity of Gradient
Descent O(d*log(%)) which is better than the closed-form solution computation for
large d.



Coming back to the problem,

Tppr = T — NV f(1y)
=z, — n(Azxy, — b)
=z — n(Ax — Ax,)
S gy — T = (Lg — nA)(Tp — x4)
= (Lg = nA)*(z1 — )

Note that (I; — nA)¥ is a k-th degree polynomial of matrix A. Before proceeding
further, let’s introduce the concept of the spectral norm of a matrix.

Definition 1. (Spectral Norm of a Matriz) : For a matriz B € R™*" its spectral
norm || Bl|s is defined as the largest singular value of B, that is

1Bl 3= 0maz (B) = max | Bz ||2.
Fact: [|Bll2 = /Amas(B" B)
For a square matrix B € R"*" if B is diagonalizable, i.e.,

JU, Ae RY™ U'U = I, A diagonal s.t.
B=UANU"",

then
1B]|> = max (yxmmw)

7|/\maz<B)‘> .
Observe that
BTB = (UAU™Y)" (UAU™Y)
U TAUTUAU!
1,
— U—TAQU—I
= UANUL.

Example: Let

Therefore,

I1Bll2 = v/49.



Now, we had
Tpy1 — T = (Ig — nA) (T — x4).
Taking the L, norm of both sides, we obtain:
261 = @ull2 = [ (Ta = nA) (2 — )]z
< [Ha = nAll2llzr — 2.2
Now, let’s analyze the matrix I;—nA. Since A = 0, A is diagonalizable as A = UAU "

where U is an orthonormal matrix and A is a diagonal matrix whose entries are the
eigenvalues of A.

I,—nmA=UU" —UAU"
=U(l;—n\)U"

It can be seen that the eigenvalues of I;—nA are given by the entries of I; —nA which
are equal to (1 — 77)‘i<A))j:1- Thus,
[@rr1 — zullo < (|1 — nAll2llzr — 42

= max|1 — nAi(A)] [lzx — 2.5
i€[d]

Let pt = Anin(A) and L = Apaz(A). Now, the previous inequality holds for any 1. We
would like to choose such a value for 7 as to tighten down the upper bound on the
R.H.S., ie. :

min max|1 — nA;(A4)]
n  i€ld]

Thus, we have a min-max problem.

1.1 Finding the Optimal n
Now, we have that:

minmax|1l — n\;(A)] < min max |[1 — A\
inmax|1 —7Ai(4)] < min max |1 — A

For a fixed value of 7, let’s analyze the function |1 — nA| to identify where the max
lies and what it evaluates to.
1—mX ,ifA<

1—n\ =
| A nA—1 [ if A >

3= 3=



This is a scaled and shifted version of the V-shaped modulus function, with the tip
of the V at % Now, depending on where % lies w.r.t. pand L, we can have three cases:

(i) b <p (i)p<i<L, (i) <t
L
] i
o) =1 1= 2]
Case 1: % < . Since A € [p, L], A > % Therefore,

1 —nA|=nA—1.
The max occurs at A = L, that is

1—n\ =nL—1.
fé},‘;‘,’iﬂ Al =n

The max evaluates out to be nL — 1

However,

1

—<ps<lL = 1-nu<0<nL—-1

n
Therefore:

1—mA=nL -1
Jmax [1—nA| =7
= max(1l —nu,nL — 1).
Case 2: ;< % < L. Since X € [u, L], A > % Therefore,
I —nA =nA—1



The max occurs at the boundaries, either A = L or A = p.

max |1 —nA| = max(1 —nul,[nL — 1).

AE[p,L]
However,
MS%SL —= 0<1—-nu, 0<nL—1
= |1 —nu|=1—-nu, and |nL — 1| =nL — 1.
Therefore:
Aréq[au}i |1 —nA| = max(1 — nu,nL —1).
Case 3 (Similar to Case 1): L < % Since A € [, L], A < % Therefore,

1 —nA|=1-nA
The max occurs at A = p.

l—pA\=1-—
Arél[%ﬁ Al nH.

The max evaluates out to be 1 — nu. However,

p<L<— = 1l-nu=20=2nl—-1

I | =

Therefore:

l—n\=1—
Arg[ay nA| n

= max(1l —nu,nL —1).

As it turns out, in all cases the max evaluates out to be:

max |1 —nA| = max(1 —nu,nL —1).
XE[p, L]

Therefore, the min-max problem evaluates to:

min max |1 — nA| = minmax(1 — nu,nL — 1).
N AE[w,L] n

Now, let’s see from the n-player’s perspective. The value of n that minimizes this
max function happens when the two lines cross each other:
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For the optimal n = LLW,

@1 — @all2 < max [l —nAl [loe — 2.2

1€[d]
< max |1 —n\ — T,
< max 1= Al los — .l
< max |1 — 2| ap — ]
max _ T — Ty
el | L+p|t ?

21
=(1———) |lxx — s iecewise linear function
(1= 72 b=l )

21 F
=(1— —— T1 — Ty by recursive expansion
(1= 72-) bon-ala Oy pansion)

Note that ‘1 — Lz—j‘ﬂ‘ is a piece-wise linear function. The argmax of ’1 — g—jﬂ‘ would
be either 4 or L and it turns out it would be y in this case. That how we obtained

1— 22 | — _2p
L+4-p L+p )

InaX,\e[M’L}



We can get convergence rate as follows:

2u F
T —Zullo <1 — ——— T — T
o =l < (1= ) lor =l

9 k
1 k
K

where K := ﬁ is the condition number.

2 Chebyshev Polynomials

Consider any algorithm in the form:

Tp1 = x1 + span{V f(z1), Vf(22), ..., Vf(zp)}. (1)

Lemma 1. Consider solving min, %xTA:I; —b"w. Algorithms in the form of (I) has
the following dynamics:
Tyt — Ty = Pp(A) (21 — 24),

where Py(A) is a k-degree polynomial of A and Py(A) = 1.

Proof. We will use induction.
Base case:

r1 —xy = (1 — )

= Py(A)(z1 — ),
where Py(A) = 1. Suppose at k, we have
T — T = P q(A) (21 — x4).
Consider k + 1,

k
Tl — Tu = T1 — Ty + Zaij(xj),
=1

span of gradients

where {a;} are some co-efficients.



We can expand as follows:

k
Tht1 — To = T1 — T + Zaij(xj)

j=1

k
=21 — Tu + Zaj(A:vj — Azx,)

j=1

k
:x1—$*+AZaj(xj—x*)

J=1

k
=1 — T« + Azafjlaj_l(A)(l'l — ZL‘*)

J=1

= (La+AY_a;Pa(A) (21 — )

=1

= Pu(A) (21 — 7).

Here, given

261 = @all2 < (| Prc(A) |2l — 22
our goal is to find the best K-degree polynomial:

Py = argmin max||Px(A)||2
" PGPK;pO(.):lAeMH ( )H y

where the set M = {A > 0 : Apin(A) = 4, Amax(A) = L }. The solution is a
“scaled-and-shifted” Chebyshev Polynomial.

Definition 2. (K-degree Chebyshev Polynomial of the first kind) We denote ®g(+)
the degree-K Chebyshev polynomial of the first kind, which is defined by:

cos(K arccos(r)) if v e [—1,1],
Qg (x) = ¢ cosh(K arccosh(z)) if © > 1,
(—1)%cosh(K arccosh(x)) ifx < 1.
Here is an equivalent definition:
(I)()(ZL‘) = 1,
O (z) =z,
Oy (x) = 20P)_1(x) — Pp_o(x), for k > 2



Consider a scaled-and-shifted K-degree Chebyshev Polynomial
. D (h(A))
O (N) i= ———=%,
SR 0]
where h(-) is the mapping h(\) := L—JE“__M—Q’\
Observe that the mapping h(-) maps all A € [u, L] into the interval [—1, 1]:

. h(u):LJZ“—:f“zl.

. h(L):M:—l.

L—p
As a result, by the definition of K-degree Chebyshev Polynomial of the first kind, we
have
D (h(N) < 1.

Also, we have
L+pu 24
h(0)=—=1
(0) Ry
so by the properties of Chebyshev Polynomial, ®x(h(0)) would grow exponentially.
Lemma 2. (see e.g., Lemma 3 in [Wang (2023)] and Section 2.3 in [dAspremont et al. (2021)])

For any positive integer K, we have

> 1,

_ 92 K
PN <2(1-— .
ey [ @] = ( v%—%l)

Proof. Observe that the numerator of @ ()\) = % satisfies |@x (h(N))] < 1, since
h(\) € [-1,1] for A € [u, L] and that the Chebyshev polynomial satisfies |®x(-)| < 1

when its argument is in [—1, 1] by the definition. It remains to bound the denominator,

which is @ (h(0)) = cosh (K arccosh (%)) Since

2
VL
arccosh (é—f’;) = log (% + (é—fz) - 1) = log(#), where 0§ := ﬁfﬁ’

we have

CI)K(h(O)) = cosh (K arccosh (%)) _ eXp(Klog(Q))JrQexp(*Klog(9)) _ 0K+2€_K > %

Combing the above inequalities, we obtain the desired result:

beh)| 2 o, 5 vE "
@K<h<0>>‘§9f< 2<1 2¢z+¢ﬁ>

_o 1_@( g)

max [Py (\)| = max
A€E[p,L] A€p,L]

K



We have derived the dynamic of gradient descent as

9 K
|21 — 2]z < (1 - m) 21 — @2

For Chebyshev method, we have

— < i —
1% 511 w*||2_Pepg;g(.)zlg%HPK(A)Hszl |2

9 K
<2(1— — — Tyl|o-
<2(1- 2 ozl
where the set M :={A > 0: Apin(A) = g, Amax(4) = L }.

For example, suppose £ = 100. Then, 1 — 25 =0.98 and 1 — \/E2+1 ~1-2~08.

Having a dependency of square root of condition number x is considered to be better

than having a linear dependency of the condition number because 1 — ——2— < 1

2
NCES T k1L

as k > 1.

Question: What is the optimal algorithm implied by the scaled-and-shifted K-degree
Chebyshev polynomial?

Answer:
405

T4l = Tk — L——,uvf(xK) + Br(vx — xK_1),

where [k is called the momentum parameter and Sk (zx — zx_1) is the momentum

term (weighted average of previous gradients).
If we set a constant step size for gradient descent, we have

Tpy1 — T = (g —nA)Lg —nA) ... (Ig — nA) (1 — x4).
Question: What if we specify a scheme of non-constant step size in GD?
Trp1 = T — MV f (21).

Answer: Here, we have xy 1 = xp —np(Axg — Azy) = 2p1 — 20 = (Ig—mpA) (2 — ).
The dynamic becomes

Tpy1 — T = (Lg — A) g — i1 A) ... (Ig — mA) (z1 — x4).
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Hence

Jzscer =2 < max T (1= )| oy = e

Chebyshev roots are given as

T(K)‘:L+M—L_Mcos (k_%ﬂ
koo 2 2 K

and
o, (")) = 0.

The equivalent form of ®x()) is given as

_ A

k

The convergence rate thus becomes

_ 9 K
s = max i (N) <2 (1 —z.fa,
o= = max () <2 (1= 2 ) el

[k —2]2 < max Iy (1= me)i)

where the inequality is by Lemma B.
To go beyond quadratic, we have the following two results:
Negative result: Gradient descent with Chebyshev step size fails to converge
[Agarwal et al. (2021}
f(z) =logcoshx + 0.012%

Positive result: Gradient descent with a scheme of non-constant step size con-
verges at a rate [Altschuler et al. (2023)]

k
1
s — ]l < (1—@ (—)) lor — z.la

Bibliographic notes

More prelimiaries of calculus and linear algebra can be found in Chapter 1 of [Drusvyatskiy (2020)]
and Chapter 2 of [Vishnoi (2021})].
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Empirical comparison
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Figure 1: Comparison of GD with a constant step size, GD with Chebyshev step size
(Young’s method), and Chebyshev method. Picture taken from [Pedregosa (2021)].
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