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Lecture 16: (Continue) Min-Max Optimization

1 Saddle points in min-max optimization

The goal of min-max optimzation

Consider the following optimization problem:

inf sup g(z,
inf sup (e, y)

where g : X XY — Ris a given function, X and Y are sets over which the optimization
is performed, inf denotes the infimum (or greatest lower bound), and sup denotes the
supremum (or least upper bound).

Definition of saddle points

Definition 1 (Saddle Points/Nash Equilibrium). Let x € X and y € Y and g(-,-) :
X XY = R. A pair of points (z.,y.) € X XY is a saddle point of g(-,-) if

(@, y) < (@4, ys) < g(2,04), Vo € X,y €Y.

Remark. This condition implies that at the saddle point, g(x.,y.) represents a
Nash equilibrium in the sense that no player can unilaterally improve their payoff by
changing their strategy from z, or y..

Theorem 1. Let g : X XY — R, where X and Y are non-empty sets. A point
(4, Ys) 1S a saddle point of g if and only if the following conditions are satisfied:

1. The supremum in sup,cy inf,ex g(z,y) is attained at y..

2. The infimum in inf,cx sup,ey g(7,y) is attained at ..

3. Moreover, sup,cy inf,ex g(7,y) = infoex sup,ey g(x,y).
Remarks.

1. If inf sup and supinf have different values, then there is no saddle point.



2. If a saddle point exists, then:

o There might be multiple ones, all of them must have the same minimax
value, i.e., sup,cy infocx g(z,y) = infoex sup,cy g(2,y)
o The set of saddle points is the Cartesian product X, x Y, when nonempty.

e The set x, is the optimal solution to inf,ex sup,cy g(z,y).

o The set y. is the optimal solution to sup,cy inf,ex g(z,y).

Example of No Saddle Points

Consider the function g(z,y) = (x —y)? with X = [~1,1] and Y = [—1,1]. Then, we
evaluate the infimum and supremum as follows:

inf sup(z — y)? = inf (1 + |z|)? =1,
inf sup(z — )" = jnf (1 + [o)
where the infimum is taken over the maximum value the function can achieve for each
x, realizing that the maximum occurs at the endpoints of Y. Similarly,

sup inf (x — y)? = sup 0 = 0,
yey T€X yey
where the infimum for each y is achieved when x = y, leading to a minimum value of
0 for all y.
This discrepancy between the infimum of the supremum and the supremum of the
infimum indicates that there are no saddle points for g(z,y) = (x —y)? over the given
domain.

2 Metric to measure the progress of min-max op-
timization

In the context of min-max optimization, it is paramount to quantify the progress
of optimization from the perspectives of participating entities. For a given function
g: X xY — R, where X and Y represent the strategy sets for two players within the
optimization problem, we define two metrics, ¢(x) and h(y), to assess progress from
the viewpoints of the xz-player and y-player respectively.



For the z-Player

Define ¢(x) as the supremum of g(z,y) over all y € Y

{(z) :=sup g(v,y).
yey

From the x-player’s perspective, the progress is measured as:

{(x) — inf {(x).

zeX

For the y-Player

Define h(y) as the infimum of g(z,y) over all z € X:

h(y) = nf g(z,y).

For the y-player’s perspective, the progress is captured by:

sup h(y) — h(y).

yey

Let g : X XY — R be a given function, and & € X, § € Y represent specific
selections within their respective domains. By the definition of sup and inf, the
following relation holds:

sup g(Z,y) > g(z,9) > inf g(z,7).
yEY SCEX

Combining the optimality gap of each player, we have that
Gap(z,9) = ¢(z) — inf {(z) +sup h(y) — h(7)
zeX yeY

=supg(x,y) — inf sup g(z,y) + sup inf g(x,y) — inf g(z,y
yey( ) IGXyGY( ) yenyX( ) xeX( )

=supg(z,y) — inf g(x,9),
yegg( y) mexg( 7)

where the second-to-the-last line is by assuming the existence of a saddle point.

Definition 2 (Duality Gap). The duality gap Gap(z,y) is defined as:

GCLp(ilA’),Z)) = Supg<:ﬁay) — inf g(xa Q)v
yey reX



Remark. Duality gap is always non-negative even if the saddle point does not exist.
By the definition of sup and inf, we have

sup g(Z,y) > g(,9) > inf g(z,7)
yey &

Therefore,

Gap(,y) :=supg(&,y) — inf g(z,7)

yEY xeX

= Sugg(i’, y) — 9(z,9) + g(&,9) — inf g(z, 9)
ye z

> 0.

e-equilibrium / e-saddle point

Assume a saddle point of g(-, ) exists. Let us define the value v, as follows:

v, = inf sup g(x,y) = sup inf g(x,y).
xeXyeypg( y) yegmexg( Y)

Definition 3 (e-equilibrium / e-saddle point). A pair (z,9) € X x Y is an e-
equilibrium or e-saddle point if
v, —e < inf g(x,9) < v, <supg(z,y) < v +e.
rzeX yGY
Remark. This definition extends the concept of a saddle point by introducing a
margin of ¢, allowing for a near-optimal equilibrium within an € range of the optimal
value v,. Using the following inequality,

sup g(z,y) > g(z,9) > inf g(x,9),
yGY xeX

we can derive the following two inequalities

Uy —€ < m}f{g(:ﬁ,g]) S0 < g(*%ag)
e

9(z,9) <supg(2,y) < v, +e¢
yey

Thus, the above definition implies that
v — €< g(Z,9) < v +e

Lemma 1. Given that the duality gap Gap(z,y) < e and assuming the existence of
a saddle point, it follows that the pair (z,y) € X XY constitutes an e-equilibrium or
e-saddle point.



Proof. By definition of the duality gap
Gap(%,9) ==supg(Z,y) — inf g(z,9) <e¢
yey zeX

< supyg(Z,y) < inf g(z,9) +e.
yEY zeX

Given the optimal value

* — inf ) )
v = inf ztelgg(fv y)

it follows from the definition that

v, < sup g(&,y).
yey

Therefore, we can establish the chain of inequalities

v. = inf sup g(z,y) < supg(#,y) < inf g(z,9) +¢.

This sequence demonstrates the relationship between the optimal value v,, the supre-
mum over y for a fixed z, and the adjusted infimum over x for a fixed y by an ¢
margin, reflecting the bounds within which v, is situated.

The duality gap for a pair (z,9) is defined as:

Gap(z,y) ==supg(z,y) — inf g(z,9) <e
yey rzeX

This can be equivalently expressed as:

supg(Z,y) < inf g(x,§) +¢ < sup inf g(x,y) +e=v. +¢
yeY reX yeY zeX

Using similar arguments, we can prove the left side of the chain of inequalities.
Therefore, we have proven that

v, —e < inf g(x,9) < v, <supg(z,y) < v, +e.
zeX yey

]

Definition 4. Given a pair (z,9) € X XY, it is considered to be an e-equilibrium or
e-saddle point if the following condition holds:

v, —e < inf g(z,9) < v, <supg(z,y) < v, +e.



3 The algorithmic aspect of min-max optimization

Review of online convex optimization

Algorithm 1 Online convex optimization
1: fort=1,2,...do

2: Commit a point z with its convex decision space Z C R¢.
3: Receive a loss function 4;(-) : Z — R and incurs a loss £;(z;).
4: end for

The goal of online convex optimization is to learn to be competitive with the best-
fixed predictor from the convex set S, which is captured by minimizing the regret.
Formally, the regret of the algorithm relative to any fixed benchmark z* in Z when
running on a sequence of T examples is defined as

T

Regretp(z.) = th(zt) — th(z*).

t=1

The regret of the algorithm relative to a convex set 7Z is defined as

Regret,(Z) = argmax Regrety(z.)
z« €24

The z-Player Perspective

Consider the z-player who, at each time step ¢, plays a strategy x; € X. Upon
choosing this strategy, the x-player receives a loss function defined as:

bi(w) == g(x, y1),

where g : X XY — R is a given function that determines the loss based on the
player’s choice x; and the strategy y; chosen by the opponent at time t.

The y-Player Perspective

From the perspective of the y-player, the game proceeds as follows: at each time step
t, the y-player selects a strategy y; € Y. Upon making this selection, the y-player
receives a loss function, which is defined as:

hi(y) = —g(z,y),
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where g : X XY — R is the function determining the outcome based on the strategy
x; chosen by the opponent and the y-player’s own choice y at time ¢.

Meta-algorithm for solving min-max problems

Algorithm 2 Meta-algorithm for Solving Min-Max Problems
. Initialize OAlg” (OCO Algorithm for z) and OAlg? (OCO Algorithm for y).

1
2: Define weight sequence oy, as, ..., ar.

3: fort=1,2,...,T do

4 x plays x; < OAlg®(anly, agly, ... ap_10i—1)
5: y plays y; < OAlg(a1hy, aghg, ..., a_1hi—1)
6 x receives auly(z) := aug(z, yr)

7 y receives ayhy(y) == —aug(xy, y)

8: end for

9: Output the average strategies xr and yr, where:

T T
o D1 Uy g D iy QY
- ) T 9
Ar Ar

T
with Ap = Z 0.

t=1

TT ©

From the z-player perspective:

e Play z; € X.

» Receives the loss function at ¢, aly(x) = aug(x, yy).

(Weighted) Regret of the x-player:

T T
a-Regret” := g aly(xy) — in)f( g aly(z).
S
t=1 t=1

(Weighted) Average regret of the z-player:

a-Regret®

—R t* =
a—Regre A ,

T
where Ap =", | as.



From the y-player perspective:

e Play y, €Y.
« Receives the loss function at t, hy(y) := —aug(z4, y).

(Weighted) Regret of the y-player:
T T
) . _
a-Regret? : ;atht(yt) ;Iel}f;;atht(y)
(Weighted) Average regret of the y-player:

a-Regret?

—R tY =
a—Regre A ,

T
where Ap =), as.

Guarantees of the meta-algorithm

Theorem 2. Let g(x,y) be conver w.r.t x and concave w.r.t. y. The output (Tr,Yr)
of the meta-algorithm is an e-equilibrium of g(-,-), where

€ := a—Regret” + a—Regret”.

Also, the duality gap is bounded as

Gap(Tr,yp) = sup g(Tr,y) — in}“{g(:c,gT) < a—Regret” + a—Regret?.
yey xe

x-perspective (;(z) = g(z,y;)

gz, yp) = aly(zy)
Ly >

This expression can further be decomposed into the infimum over z in X of the
weighted outcomes, adjusted by the weighted regret for the x-player, and be simpli-
fied by using the definition of a-Regret® and a-Regret®:

i i 1 ( ) +a-Regret””
= in —ag(x _—
2eX s AT tI\ T, Yt AT
T
. 1 S
= i?)f( ZA—TOétg(xayt) + a-Regret (1)

“
I
_



Using the Jensen’s inequality, we have

< inf - x
m12){9 x Z yt + a-Regret

< sup inf g(z,y) + a-Regret®
yey zeX

y-perspective hi(y) = —g(xy,y)

1 & 1 <
T Zatg(xtvyt) = 1. Z@tht(yt)
Ar i Ar 3

This expression can further be decomposed into the infimum over y in Y of the
weighted outcomes, adjusted by the weighted regret for the y-player, and be simpli-

fied by using the definition of a-Regret? and a-Regrety:

i 1 o ) a-Regret?
— in — x -

HMH

T
1 -
= sup —aug(xy, — a-Regret?
sup §:1 " t9(2e,y) g

Using the Jensen’s inequality, we have

T
(67 _
>supg —x4,y | — a-Regrety
yey Zzl: At !

> inf inf g(z,y) — a-Regret?

zeX yeY
Thus, from (2) and (@), we have

T T
1 Z -
A_ xtv yt < lnf gl § Y| + CM—R@gT@t‘T,

and

T
Zatg vey) > supg | Y —Fany | — a-Regrety,

yey

which implies that

Gap(zr, yr) := sup g(Zr,y) — in)f(g(av7 ur) < a — Regret® + o — Regret?.
[AS

yey



First implication
Recall the Theorem:

Theorem 3. Let g(x,y) be conver w.r.t x and concave w.r.t. y. The output (Tr,Yr)
of the meta-algorithm is an e-equilibrium of g(-,-), where

€ := a—Regret” + a—Regret”.

Also, the duality gap is bounded as

Gap(Tr,yp) = sup g(Tr,y) — in)f{g(x,@T) < a—Regret” + a—Regret?.
yey z€

We have the following implication:

Let g(x,y) be convex w.r.t z and concave w.r.t. y. If the descision space X and Y
are convex and compact and g(-,-) is Lipschitz continuous, then we know there are
sublinear regret algorithms. This implies our second implication.

Second implication

Theorem 4. Let X,Y be compact convexr subsets of R™ and R™ respectively. Let
g(z,y) : X XY — R be conver in its first argument and concave in its second, and
Lipschitz with respect to both. Then,

mip max 9(z,y) = max min 9(z,y).

Proof. From (B) and (8), we have

T
1 I
_ < i _ x
" ;_1 ag(xe, yr) < 21615 ;g)f(g(x, y) + a-Regret

and

T
1 o -
A_T ;Odtg(xta Yi) > ;él)f( ;g}f/g(l‘,y) — a-Regrety

we can derive that

supinf g(z,y) + a-Regret® > inf sup g(z,y) — a-Regret?
y * Ty

< supinf g(x,y) + a-Regret® + a-Regrety > inf sup g(x, y)
y * Ty

Recall the following lemma in the last lecture:
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Lemma 2. Let g(-,-) : X XY — R, where X and Y are not empty. Then,

inf sup g(z,y) > sup inf g(x,y)
zeX yey yeY rzeX

Therefore, we get

i s

]

The above result together with the following theorem that we saw in the last
lecture imply that a saddle point exsits for when g(z,y) is convex w.r.t  and concave
w.r.t. y, g(-,-) is Lipschitz continuous, and the descision space X and Y are convex
and compact.

Theorem 5. Let g(z,y) : X xY — R, where X and Y are not empty. A point
(2, ys) 18 a saddle point if and only if

o The supremum in sup,cy infocx g(x,y) is attained at y. & the infimum in inf,c x sup,cy g(2,y)
s attained at .

o Also, sup,cy infoex g(2,y) = infoex sup,ey g(z, 7).

4 Applications of the min-max theorem

Boosting as a bilinear game

Denote the training set {z; € R? I; = {+1,—1}}7",. Let H := {h(-)}}-, be a set of
prediction functions, i.e.,
hi(-) s RY — {+1,-1}.

We can construct the misclassification matrix as

1 if hl(Z]) 7£ lj,

i?j = .
0 otherwise.
We have that
n m
min max z' Ay := min max zliy[j]1{h;(z l;
min max x Ay i= min ma ;JZI {hi(z) # 1}

11



Assume the existence of a weak learning oracle, i.e.,

m

S ylilth, () # 1} < 5~

j=1
where v > 0. Here, i, is the index of the predictor that gives a y-weighted error better

than chance. Furthermore, for any y € A,,,

1
min z ' Ay < e;;Ay < 57

{L’EAn
Recall v, = max,ea,, mingea, ©' Ay. These imply that

_1o 1
Vx - — —.
=57 753

Thus,

max min z' Ay = v, < = — 7.
YEA, TEA, 2

As we know the Nash equilibrium/Saddle points (., y.) exist,

1
T Ay, = v, < = — 7.
2
The above implies that there exists z, € A,, such that

. = . 1 1
Vi€ [m]: ;x*[z]ﬂ{hi(zj) # 1} = 2" Aej <, < 3~ 7<3%

Less than half of the base predictors misclassify when weighted by x,[i] for each
sample j € [m]. The above implies that

- 1 1
Zx*[z]ﬂ{hl(zj) # 1} =2 Aej <, < 57 7<3
i=1

We can correctly classify all the samples using a weighted majority vote.

5 Meta-algorithm for solving min-max problems
(Simultaneously Play)

Instance of the meta-algorithm

OAlg® = FTRL,OMD, OptimisticM D, ...

12



Algorithm 3 Meta-algorithm for solving min-max problems (Simultaneously Play)
1: OAlg® (OCO Alg. of z) and OAlg? (OCO Alg. of y).
2: Weight sequence aq, ao, ..., ar.
3: fort=1,2,...,T do

x plays z; <— OAlg”(anly, agls, ..., ap_10i—1)

v y plays y; < OAlg¥(ayhy, agha, ..., o 1hi 1)
. x receives agly(z) = awg(x, yy)
y receives ayhy(y) == —aug(xs, y)
6: end for
7: Output: (ET i AlTam,yT = ﬂ%:tyt), where Ar =3, ay.

OAlgY = FTRL,OMD, OptimisticM D, ...

Assume that a; = 1 and T7 and 77 are e—equilibrium points

€ — Regret%(OMD) + Regret%(OMD) (\F) —0,as T — 00
Question: Can we get a better rate than O(%) Yes!

Recall Online Mirror Descent

The function ¢;(z) is convex but not necessarily differentiable. ¢; € 00;(z;) is the
subgradient of 4,(-) at z;.

Algorithm 4 Online Mirror Descent
1: fort=1,2,... do
2: Zpp1 = argmin,ec(gs, 2 — 2¢) + %th(z).
3: end for

Mirror Descent has
T

> 6l (=) < D5 +Z—ugtu

t=1
for any benchmark z* € Z.
If the loss 4;(-) is scaled by ay,

a-Regret_(2*) < Dd) )+ Z g,

13



for any benchmark 2* € Z.
Assume there is a good guess m; of g;.

Algorithm 5 Optimistic Mirror Descent

1: fort=1,2,... do

2: %1 = argmin.ec -1(ge-1,2) + —Df %(z)
3: 2 = arg min,ec ap(my, z) + %D¢ ( ).

4: end for

We have that
a-Regret®(z*) < D‘b (2:) + Z ~llaw(ge —ma)I7,

for any benchmark 2* € Z.
By putting two Optimistic Mirror Descent against each other, we can get O(
min-max problem, see e.g., [3] for details.

1)ina

6 Bibliographic notes

More materials about min-max optimization can be found in [, [2],[3],[4].
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