ECE 273 Convex Optimization and Applications Instructor: Jun-Kun Wang Scribe: Yunzhou Yan May 28, 2024 Editors/TAs: Marialena Sfyraki

Lecture 16: (Continue) Min-Max Optimization

1 Saddle points in min-max optimization

The goal of min-max optimzation

Consider the following optimization problem:

$$
\inf_{x \in X} \sup_{y \in Y} g(x, y)
$$

where $g: X \times Y \to \mathbb{R}$ is a given function, X and Y are sets over which the optimization is performed, inf denotes the infimum (or greatest lower bound), and sup denotes the supremum (or least upper bound).

Definition of saddle points

Definition 1 (Saddle Points/Nash Equilibrium). Let $x \in X$ and $y \in Y$ and $g(\cdot, \cdot)$: $X \times Y \to \mathbb{R}$ *. A pair of points* $(x_*, y_*) \in X \times Y$ *is a saddle point of* $g(\cdot, \cdot)$ *if*

$$
g(x_*, y) \le g(x_*, y_*) \le g(x, y_*)
$$
, $\forall x \in X, y \in Y$.

Remark. This condition implies that at the saddle point, $g(x_*, y_*)$ represents a Nash equilibrium in the sense that no player can unilaterally improve their payoff by changing their strategy from *x[∗]* or *y∗*.

Theorem 1. Let $g: X \times Y \to \mathbb{R}$, where *X* and *Y* are non-empty sets. A point (*x∗, y∗*) *is a saddle point of g if and only if the following conditions are satisfied:*

- *1. The supremum in* $\sup_{y \in Y} \inf_{x \in X} g(x, y)$ *is attained at* y_* *.*
- 2. *The infimum in* $\inf_{x \in X} \sup_{y \in Y} g(x, y)$ *is attained at* x_* .
- 3. *Moreover*, $\sup_{y \in Y} \inf_{x \in X} g(x, y) = \inf_{x \in X} \sup_{y \in Y} g(x, y)$.

Remarks.

1. If inf sup and sup inf have different values, then there is no saddle point.

- 2. If a saddle point exists, then:
	- There might be multiple ones, all of them must have the same minimax value, i.e., $\sup_{y \in Y} \inf_{x \in X} g(x, y) = \inf_{x \in X} \sup_{y \in Y} g(x, y)$
	- The set of saddle points is the Cartesian product *X[∗] × Y[∗]* when nonempty.
	- The set x_* is the optimal solution to $\inf_{x \in X} \sup_{y \in Y} g(x, y)$.
	- The set y_* is the optimal solution to $\sup_{y \in Y} \inf_{x \in X} g(x, y)$.

Example of No Saddle Points

Consider the function $g(x, y) = (x - y)^2$ with $X = [-1, 1]$ and $Y = [-1, 1]$. Then, we evaluate the infimum and supremum as follows:

$$
\inf_{x \in X} \sup_{y \in Y} (x - y)^2 = \inf_{x \in X} (1 + |x|)^2 = 1,
$$

where the infimum is taken over the maximum value the function can achieve for each *x*, realizing that the maximum occurs at the endpoints of *Y* . Similarly,

$$
\sup_{y \in Y} \inf_{x \in X} (x - y)^2 = \sup_{y \in Y} 0 = 0,
$$

where the infimum for each y is achieved when $x = y$, leading to a minimum value of 0 for all *y*.

This discrepancy between the infimum of the supremum and the supremum of the infimum indicates that there are no saddle points for $g(x, y) = (x - y)^2$ over the given domain.

2 Metric to measure the progress of min-max optimization

In the context of min-max optimization, it is paramount to quantify the progress of optimization from the perspectives of participating entities. For a given function $g: X \times Y \to \mathbb{R}$, where X and Y represent the strategy sets for two players within the optimization problem, we define two metrics, $\ell(x)$ and $h(y)$, to assess progress from the viewpoints of the *x*-player and *y*-player respectively.

For the *x***-Player**

Define $\ell(x)$ as the supremum of $g(x, y)$ over all $y \in Y$:

$$
\ell(x) := \sup_{y \in Y} g(x, y).
$$

From the *x*-player's perspective, the progress is measured as:

$$
\ell(x) - \inf_{x \in X} \ell(x).
$$

For the *y***-Player**

Define $h(y)$ as the infimum of $g(x, y)$ over all $x \in X$:

$$
h(y) := \inf_{x \in X} g(x, y).
$$

For the *y*-player's perspective, the progress is captured by:

$$
\sup_{y \in Y} h(y) - h(y).
$$

Let $g: X \times Y \to \mathbb{R}$ be a given function, and $\hat{x} \in X$, $\hat{y} \in Y$ represent specific selections within their respective domains. By the definition of sup and inf, the following relation holds:

$$
\sup_{y \in Y} g(\hat{x}, y) \ge g(\hat{x}, \hat{y}) \ge \inf_{x \in X} g(x, \hat{y}).
$$

Combining the optimality gap of each player, we have that

$$
Gap(\hat{x}, \hat{y}) := \ell(\hat{x}) - \inf_{x \in X} \ell(x) + \sup_{y \in Y} h(y) - h(\hat{y})
$$

=
$$
\sup_{y \in Y} g(x, y) - \inf_{x \in X} \sup_{y \in Y} g(x, y) + \sup_{y \in Y} \inf_{x \in X} g(x, y) - \inf_{x \in X} g(x, y)
$$

=
$$
\sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y}),
$$

where the second-to-the-last line is by assuming the existence of a saddle point.

Definition 2 (Duality Gap). The duality gap $Gap(\hat{x}, \hat{y})$ is defined as:

$$
Gap(\hat{x}, \hat{y}) := \sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y}),
$$

Remark. Duality gap is always non-negative even if the saddle point does not exist. By the definition of sup and inf, we have

$$
\sup_{y \in Y} g(\hat{x}, y) \ge g(\hat{x}, \hat{y}) \ge \inf_{x} g(x, \hat{y})
$$

Therefore,

$$
Gap(\hat{x}, \hat{y}) := \sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y})
$$

=
$$
\sup_{y \in Y} g(\hat{x}, y) - g(\hat{x}, \hat{y}) + g(\hat{x}, \hat{y}) - \inf_{x} g(x, \hat{y})
$$

$$
\geq 0.
$$

*ϵ***-equilibrium /** *ϵ***-saddle point**

Assume a saddle point of $g(\cdot, \cdot)$ exists. Let us define the value v_* as follows:

$$
v_* = \inf_{x \in X} \sup_{y \in Y} g(x, y) = \sup_{y \in Y} \inf_{x \in X} g(x, y).
$$

Definition 3 (ϵ -equilibrium / ϵ -saddle point). A pair $(\hat{x}, \hat{y}) \in X \times Y$ *is an* ϵ *equilibrium or ε-saddle point if*

$$
v_*-\varepsilon\leq \inf_{x\in X}g(x,\hat{y})\leq v_*\leq \sup_{y\in Y}g(\hat{x},y)\leq v_*+\varepsilon.
$$

Remark. This definition extends the concept of a saddle point by introducing a margin of ε , allowing for a near-optimal equilibrium within an ε range of the optimal value *v∗*. Using the following inequality,

$$
\sup_{y \in Y} g(\hat{x}, y) \ge g(\hat{x}, \hat{y}) \ge \inf_{x \in X} g(x, \hat{y}),
$$

we can derive the following two inequalities

$$
v_* - \varepsilon \le \inf_{x \in X} g(x, \hat{y}) \le v_* \le g(\hat{x}, \hat{y})
$$

$$
g(\hat{x}, \hat{y}) \le \sup_{y \in Y} g(\hat{x}, y) \le v_* + \varepsilon
$$

Thus, the above definition implies that

$$
v_* - \epsilon \le g(\hat{x}, \hat{y}) \le v_* + \epsilon.
$$

Lemma 1. *Given that the duality gap* $Gap(\hat{x}, \hat{y}) \leq \varepsilon$ *and assuming the existence of a saddle point, it follows that the pair* $(\hat{x}, \hat{y}) \in X \times Y$ *constitutes an* ε *-equilibrium or ε-saddle point.*

Proof. By definition of the duality gap

$$
Gap(\hat{x}, \hat{y}) := \sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y}) \le \varepsilon
$$

$$
\Leftrightarrow \sup_{y \in Y} g(\hat{x}, y) \le \inf_{x \in X} g(x, \hat{y}) + \varepsilon.
$$

Given the optimal value

$$
v_* = \inf_{x \in X} \sup_{y \in Y} g(x, y),
$$

it follows from the definition that

$$
v_* \le \sup_{y \in Y} g(\hat{x}, y).
$$

Therefore, we can establish the chain of inequalities

$$
v_* = \inf_{x \in X} \sup_{y \in Y} g(x, y) \le \sup_{y \in Y} g(\hat{x}, y) \le \inf_{x \in X} g(x, \hat{y}) + \varepsilon.
$$

This sequence demonstrates the relationship between the optimal value *v∗*, the supremum over *y* for a fixed \hat{x} , and the adjusted infimum over *x* for a fixed \hat{y} by an ε margin, reflecting the bounds within which *v[∗]* is situated. The duality gap for a pair (\hat{x}, \hat{y}) is defined as:

$$
Gap(\hat{x}, \hat{y}) := \sup_{y \in Y} g(\hat{x}, y) - \inf_{x \in X} g(x, \hat{y}) \le \varepsilon
$$

This can be equivalently expressed as:

$$
\sup_{y \in Y} g(\hat{x}, y) \le \inf_{x \in X} g(x, \hat{y}) + \varepsilon \le \sup_{y \in Y} \inf_{x \in X} g(x, y) + \varepsilon = v_* + \varepsilon
$$

Using similar arguments, we can prove the left side of the chain of inequalities. Therefore, we have proven that

$$
v_* - \varepsilon \le \inf_{x \in X} g(x, \hat{y}) \le v_* \le \sup_{y \in Y} g(\hat{x}, y) \le v_* + \varepsilon.
$$

 \Box

Definition 4. *Given a pair* $(\hat{x}, \hat{y}) \in X \times Y$ *, it is considered to be an* ε *-equilibrium or ε-saddle point if the following condition holds:*

$$
v_* - \varepsilon \le \inf_{x \in X} g(x, \hat{y}) \le v_* \le \sup_{y \in Y} g(\hat{x}, y) \le v_* + \varepsilon.
$$

3 The algorithmic aspect of min-max optimization

Review of online convex optimization

Algorithm 1 Online convex optimization

1: **for** $t = 1, 2, \ldots$ **do** 2: Commit a point z_t with its convex decision space $Z \subset \mathbb{R}^d$. 3: Receive a loss function $\ell_t(\cdot) : Z \to \mathbb{R}$ and incurs a loss $\ell_t(z_t)$. 4: **end for**

The goal of online convex optimization is to learn to be competitive with the bestfixed predictor from the convex set *S*, which is captured by minimizing the regret. Formally, the regret of the algorithm relative to any fixed benchmark *z ∗* in Z when running on a sequence of T examples is defined as

Regret_T(z_{*}) =
$$
\sum_{t=1}^{T} l_t(z_t) - \sum_{t=1}^{T} l_t(z_*)
$$
.

The regret of the algorithm relative to a convex set Z is defined as

$$
RegretT(Z) = \underset{z_* \in Z}{\text{argmax}} RegretT(z_*)
$$

The *x***-Player Perspective**

Consider the *x*-player who, at each time step *t*, plays a strategy $x_t \in X$. Upon choosing this strategy, the *x*-player receives a loss function defined as:

$$
\ell_t(x) := g(x, y_t),
$$

where $g: X \times Y \to \mathbb{R}$ is a given function that determines the loss based on the player's choice x_t and the strategy y_t chosen by the opponent at time t .

The *y***-Player Perspective**

From the perspective of the *y*-player, the game proceeds as follows: at each time step *t*, the *y*-player selects a strategy $y_t \in Y$. Upon making this selection, the *y*-player receives a loss function, which is defined as:

$$
h_t(y) := -g(x_t, y),
$$

where $g: X \times Y \to \mathbb{R}$ is the function determining the outcome based on the strategy x_t chosen by the opponent and the *y*-player's own choice *y* at time *t*.

Meta-algorithm for solving min-max problems

Algorithm 2 Meta-algorithm for Solving Min-Max Problems

1: Initialize \widehat{OAlg}^x (OCO Algorithm for *x*) and \widehat{OAlg}^y (OCO Algorithm for *y*).

- 2: Define weight sequence $\alpha_1, \alpha_2, \ldots, \alpha_T$.
- 3: **for** $t = 1, 2, ..., T$ **do**
- 4: *x* plays $x_t \leftarrow \text{OAlg}^x(\alpha_1 \ell_1, \alpha_2 \ell_2, \dots, \alpha_{t-1} \ell_{t-1})$
- 5: *y* plays $y_t \leftarrow \text{OAlg}^y(\alpha_1 h_1, \alpha_2 h_2, \dots, \alpha_{t-1} h_{t-1})$
- 6: *x* receives $\alpha_t \ell_t(x) := \alpha_t g(x, y_t)$
- 7: *y* receives $\alpha_t h_t(y) := -\alpha_t g(x_t, y)$
- 8: **end for**
- 9: Output the average strategies x_T and y_T , where:

$$
x_T := \frac{\sum_{t=1}^T \alpha_t x_t}{A_T}, \quad y_T := \frac{\sum_{t=1}^T \alpha_t y_t}{A_T},
$$

with
$$
A_T := \sum_{t=1}^T \alpha_t.
$$

From the *x***-player perspective:**

- Play $x_t \in X$.
- Receives the loss function at t , $\alpha_t \ell_t(x) := \alpha_t g(x, y_t)$.

(Weighted) Regret of the *x*-player:

$$
\alpha\text{-}Regret^x := \sum_{t=1}^T \alpha_t \ell_t(x_t) - \inf_{x \in X} \sum_{t=1}^T \alpha_t \ell_t(x).
$$

(Weighted) Average regret of the *x*-player:

$$
\overline{\alpha-\text{Regret}^x}:=\frac{\alpha\text{-}Regret^x}{A_T},
$$

where $A_T := \sum_{t=1}^T \alpha_t$.

From the *y***-player perspective:**

- Play $y_t \in Y$.
- Receives the loss function at *t*, $h_t(y) := -\alpha_t g(x_t, y)$.

(Weighted) Regret of the *y*-player:

$$
\alpha\text{-}Regret^y := \sum_{t=1}^T \alpha_t h_t(y_t) - \inf_{y \in Y} \sum_{t=1}^T \alpha_t h_t(y).
$$

(Weighted) Average regret of the *y*-player:

$$
\overline{\alpha-\text{Regret}^y}:=\frac{\alpha\text{-}Regret^y}{A_T},
$$

where $A_T := \sum_{t=1}^T \alpha_t$.

Guarantees of the meta-algorithm

Theorem 2. Let $g(x, y)$ be convex w.r.t x and concave w.r.t. y. The output $(\overline{x}_T, \overline{y}_T)$ *of the meta-algorithm is an* ϵ *-equilibrium of* $g(\cdot, \cdot)$ *, where*

$$
\epsilon := \overline{\alpha - \text{Regret}^x} + \overline{\alpha - \text{Regret}^y}
$$

Also, the duality gap is bounded as

$$
Gap(\overline{x}_T, \overline{y}_T) := \sup_{y \in Y} g(\overline{x}_T, y) - \inf_{x \in X} g(x, \overline{y}_T) \le \overline{\alpha - Regret^x} + \overline{\alpha - Regret^y}.
$$

x-perspective $\ell_t(x) = g(x, y_t)$

$$
\frac{1}{A_T} \sum_{t=1}^T \alpha_t g(x_t, y_t) = \frac{1}{A_T} \sum_{t=1}^T \alpha_t \ell_t(x_t)
$$

This expression can further be decomposed into the infimum over *x* in *X* of the weighted outcomes, adjusted by the weighted regret for the *x*-player, and be simplified by using the definition of α -*Regret^x* and $\overline{\alpha$ -*Regret^x*:

$$
= \inf_{x \in X} \left(\sum_{t=1}^{T} \frac{1}{A_T} \alpha_t g(x, y_t) \right) + \frac{\alpha \text{-Regret}^x}{A_T}
$$

$$
= \inf_{x \in X} \left(\sum_{t=1}^{T} \frac{1}{A_T} \alpha_t g(x, y_t) \right) + \overline{\alpha \text{-Regret}^x}
$$
(1)

.

Using the Jensen's inequality, we have

$$
\leq \inf_{x \in X} g\left(x, \sum_{t=1}^{T} \frac{\alpha_t}{A_t} y_t\right) + \overline{\alpha \text{-}Regret^x} \tag{2}
$$

$$
\leq \sup_{y \in Y} \inf_{x \in X} g(x, y) + \overline{\alpha \text{-} Regret^x}
$$
\n(3)

y-perspective $h_t(y) = -g(x_t, y)$

$$
\frac{1}{A_T} \sum_{t=1}^T \alpha_t g(x_t, y_t) = \frac{1}{A_T} - \sum_{t=1}^T \alpha_t h_t(y_t)
$$

This expression can further be decomposed into the infimum over *y* in *Y* of the weighted outcomes, adjusted by the weighted regret for the *y*-player, and be simplified by using the definition of α -*Regret^y* and $\overline{\alpha}$ -*Regret^y*:

$$
= -\inf_{y \in Y} \left(\sum_{t=1}^{T} \frac{1}{A_T} \alpha_t g(x, y_t) \right) - \frac{\alpha \text{-} Regret^y}{A_T}
$$

$$
= \sup_{y \in Y} \left(\sum_{t=1}^{T} \frac{1}{A_T} \alpha_t g(x_t, y) \right) - \overline{\alpha \text{-}Regret^y}
$$

Using the Jensen's inequality, we have

$$
\geq \sup_{y \in Y} g\left(\sum_{t=1}^{T} \frac{\alpha_t}{A_t} x_t, y\right) - \overline{\alpha \text{-}Regret^y} \tag{4}
$$

$$
\geq \inf_{x \in X} \inf_{y \in Y} g(x, y) - \overline{\alpha \text{-}Regret^y} \tag{5}
$$

Thus, from (2) and (4) (4) , we have

$$
\frac{1}{A_T} \sum_{t=1}^T \alpha_t g(x_t, y_t) \le \inf_{x \in X} g\left(x, \sum_{t=1}^T \frac{\alpha_t}{A_t} y_t\right) + \overline{\alpha \text{-}Regret^x},
$$

and

$$
\frac{1}{A_T} \sum_{t=1}^T \alpha_t g(x_t, y_t) \ge \sup_{y \in Y} g\left(\sum_{t=1}^T \frac{\alpha_t}{A_t} x_t, y\right) - \overline{\alpha \text{-}Regret^y},
$$

which implies that

$$
Gap(\bar{x}_T, \bar{y}_T) := \sup_{y \in Y} g(\bar{x}_T, y) - \inf_{x \in X} g(x, \bar{y}_T) \le \overline{\alpha - Regret^x} + \overline{\alpha - Regret^y}.
$$

First implication

Recall the Theorem:

Theorem 3. Let $g(x, y)$ be convex w.r.t x and concave w.r.t. y. The output $(\overline{x}_T, \overline{y}_T)$ *of the meta-algorithm is an* ϵ *-equilibrium of* $g(\cdot, \cdot)$ *, where*

$$
\epsilon := \overline{\alpha - \text{Regret}^x} + \overline{\alpha - \text{Regret}^y}.
$$

Also, the duality gap is bounded as

$$
Gap(\overline{x}_T, \overline{y}_T) := \sup_{y \in Y} g(\overline{x}_T, y) - \inf_{x \in X} g(x, \overline{y}_T) \le \overline{\alpha - Regret^x} + \overline{\alpha - Regret^y}.
$$

We have the following implication:

Let $g(x, y)$ be convex w.r.t *x* and concave w.r.t. *y*. If the descision space *X* and *Y* are convex and compact and $g(\cdot, \cdot)$ is Lipschitz continuous, then we know there are sublinear regret algorithms. This implies our second implication.

Second implication

Theorem 4. Let X, Y be compact convex subsets of \mathbb{R}^n and \mathbb{R}^m respectively. Let $g(x, y) : X \times Y \to \mathbb{R}$ *be convex in its first argument and concave in its second, and Lipschitz with respect to both. Then,*

$$
\min_{x \in X} \max_{y \in Y} g(x, y) = \max_{y \in Y} \min_{x \in X} g(x, y).
$$

Proof. From [\(3\)](#page-8-2) and ([5\)](#page-8-3), we have

$$
\frac{1}{A_T} \sum_{t=1}^T \alpha_t g(x_t, y_t) \le \sup_{y \in Y} \inf_{x \in X} g(x, y) + \overline{\alpha \text{-}Regret^x}
$$

and

$$
\frac{1}{A_T} \sum_{t=1}^T \alpha_t g(x_t, y_t) \ge \inf_{x \in X} \inf_{y \in Y} g(x, y) - \overline{\alpha \text{-}Regret^y}
$$

we can derive that

$$
\sup_{y} \inf_{x} g(x, y) + \overline{\alpha \text{-} Regret}^{x} \ge \inf_{x} \sup_{y} g(x, y) - \overline{\alpha \text{-} Regret}^{y}
$$

$$
\Leftrightarrow \sup_{y} \inf_{x} g(x, y) + \overline{\alpha \text{-}Regret}^{x} + \overline{\alpha \text{-}Regret}^{y} \ge \inf_{x} \sup_{y} g(x, y)
$$

Recall the following lemma in the last lecture:

Lemma 2. Let $g(\cdot, \cdot) : X \times Y \to \mathbb{R}$, where *X* and *Y* are not empty. Then,

$$
\inf_{x \in X} \sup_{y \in Y} g(x, y) \ge \sup_{y \in Y} \inf_{x \in X} g(x, y)
$$

Therefore, we get

$$
\min_{x \in X} \max_{y \in Y} g(x, y) = \max_{y \in Y} \min_{x \in X} g(x, y).
$$

 \Box

The above result together with the following theorem that we saw in the last lecture imply that a saddle point exsits for when $g(x, y)$ is convex w.r.t x and concave w.r.t. *y*, $g(\cdot, \cdot)$ is Lipschitz continuous, and the descision space X and Y are convex and compact.

Theorem 5. Let $g(x, y) : X \times Y \to \mathbb{R}$, where X and Y are not empty. A point (*x∗, y∗*) *is a saddle point if and only if*

- The supremum in $\sup_{y\in Y} \inf_{x\in X} g(x, y)$ is attained at y_* & the infimum in $\inf_{x\in X} \sup_{y\in Y} g(x, y)$ *is attained at x∗.*
- *Also*, $\sup_{y \in Y} \inf_{x \in X} g(x, y) = \inf_{x \in X} \sup_{y \in Y} g(x, y)$.

4 Applications of the min-max theorem

Boosting as a bilinear game

Denote the training set $\{z_j \in \mathbb{R}^d, l_j = \{+1, -1\}\}_{j=1}^m$. Let $H := \{h_i(\cdot)\}_{i=1}^n$ be a set of prediction functions, i.e.,

$$
h_i(\cdot): \mathbb{R}^d \to \{+1, -1\}.
$$

We can construct the misclassification matrix as

$$
A_{i,j} = \begin{cases} 1 & \text{if } h_i(z_j) \neq l_j, \\ 0 & \text{otherwise.} \end{cases}
$$

We have that

$$
\min_{x \in \Delta_n} \max_{y \in \Delta_m} x^{\top} A y := \min_{x \in \Delta_n} \max_{y \in \Delta_m} \sum_{i=1}^n \sum_{j=1}^m x[i] y[j] \mathbb{I} \{ h_i(z_j) \neq l_j \}
$$

Assume the existence of a weak learning oracle, i.e.,

$$
\sum_{j=1}^{m} y[j] \mathbb{I} \{ h_{i_*}(z_j) \neq l_j \} \leq \frac{1}{2} - \gamma,
$$

where $\gamma > 0$. Here, i_* is the index of the predictor that gives a *y*-weighted error better than chance. Furthermore, for any $y \in \Delta_m$,

$$
\min_{x \in \Delta_n} x^\top A y \le e_{i_*}^\top A y \le \frac{1}{2} - \gamma.
$$

Recall $v_* = \max_{y \in \Delta_m} \min_{x \in \Delta_n} x^\top A y$. These imply that

$$
v_*\leq \frac{1}{2}-\gamma<\frac{1}{2}.
$$

Thus,

$$
\max_{y \in \Delta_m} \min_{x \in \Delta_n} x^\top A y = v_* \le \frac{1}{2} - \gamma.
$$

As we know the Nash equilibrium/Saddle points (x_*, y_*) exist,

$$
x^{*T}Ay_* = v_* \le \frac{1}{2} - \gamma.
$$

The above implies that there exists $x_* \in \Delta_n$ such that

$$
\forall j \in [m] : \sum_{i=1}^{n} x_{*}[i] \mathbb{I} \{ h_{i}(z_{j}) \neq l_{j} \} = x^{*T} A e_{j} \leq v_{*} \leq \frac{1}{2} - \gamma < \frac{1}{2}.
$$

Less than half of the base predictors misclassify when weighted by *x∗*[*i*] for each sample $j \in [m]$. The above implies that

$$
\sum_{i=1}^{n} x_{*}[i] \mathbb{I} \{ h_{i}(z_{j}) \neq l_{j} \} = x^{* \top} A e_{j} \leq v_{*} \leq \frac{1}{2} - \gamma < \frac{1}{2}.
$$

We can correctly classify all the samples using a weighted majority vote.

5 Meta-algorithm for solving min-max problems (Simultaneously Play)

Instance of the meta-algorithm

$$
OAlg^x = FTRL, OMD, OptimizationD, \ldots
$$

Algorithm 3 Meta-algorithm for solving min-max problems (Simultaneously Play)

- 1: OAlg^x (OCO Alg. of *x*) and OAlg^y (OCO Alg. of *y*).
- 2: Weight sequence $\alpha_1, \alpha_2, \ldots, \alpha_T$.

3: **for**
$$
t = 1, 2, ..., T
$$
 do
\n4:
$$
\begin{cases}\n\text{x plays } x_t \leftarrow \text{OAlg}^x(\alpha_1 \ell_1, \alpha_2 \ell_2, ..., \alpha_{t-1} \ell_{t-1}) \\
\text{y plays } y_t \leftarrow \text{OAlg}^y(\alpha_1 h_1, \alpha_2 h_2, ..., \alpha_{t-1} h_{t-1}) \\
\text{x receives } \alpha_t \ell_t(x) := \alpha_t g(x, y_t) \\
\text{y receives } \alpha_t h_t(y) := -\alpha_t g(x_t, y)\n\end{cases}
$$
\n6: **end for**
\n7: Output:
$$
\left(\overline{x}_T := \frac{\sum_{t=1}^T \alpha_t x_t}{A_T}, \overline{y}_T := \frac{\sum_{t=1}^T \alpha_t y_t}{A_T}\right), \text{ where } A_T := \sum_{t=1}^T \alpha_t.
$$

 $OAlg^y = FTRL, OMD, OptimizationD, ...$

Assume that $\alpha_t = 1$ and \overline{x} *T* and \overline{y} *T* are ϵ *-*equilibrium points

$$
\epsilon = \frac{\text{Regret}_T(\text{OMD})}{T} + \frac{\text{Regret}_T(\text{OMD})}{T} = \frac{\mathcal{O}(\sqrt{T})}{T} \rightarrow 0,
$$
 as $T \rightarrow \infty$

Question: Can we get a better rate than $\mathcal{O}(\frac{1}{\sqrt{n}})$ *T*)? Yes!

Recall Online Mirror Descent

The function $\ell_t(z)$ is convex but not necessarily differentiable. $g_t \in \partial \ell_t(z_t)$ is the subgradient of $\ell_t(\cdot)$ at z_t .

Algorithm 4 Online Mirror Descent

1: **for** $t = 1, 2, ...$ **do** 2: $z_{t+1} = \arg \min_{z \in C} \langle g_t, z - z_t \rangle + \frac{1}{\eta}$ $\frac{1}{\eta}D_{z_t}^{\phi}(z)$. 3: **end for**

Mirror Descent has

$$
\sum_{t=1}^{T} \ell_t(z_t) - \ell_t(z^*) \leq \frac{1}{\eta} D_{z_1}^{\phi}(z^*) + \sum_{t=1}^{T} \frac{\eta}{2} ||g_t||_*^2,
$$

for any benchmark $z^* \in Z$. If the loss $\ell_t(\cdot)$ is scaled by α_t ,

$$
\alpha
$$
-Regret_z(z^{*}) $\leq \frac{1}{\eta} D_{z_1}^{\phi}(z^*) + \sum_{t=1}^T \frac{\eta}{2} ||\alpha_t g_t||_*^2$,

for any benchmark $z^* \in Z$. Assume there is a good guess m_t of g_t .

We have that

$$
\alpha \text{-Regret}^z(z^*) \le \frac{1}{\eta} D_{z_1}^{\phi}(z_*) + \sum_{t=1}^T \frac{\eta}{2} ||\alpha_t(g_t - m_t)||_*^2,
$$

for any benchmark $z^* \in Z$.

By putting two Optimistic Mirror Descent against each other, we can get $\mathcal{O}(\frac{1}{T})$ $\frac{1}{T}$) in a min-max problem, see e.g., [[3\]](#page-13-0) for details.

6 Bibliographic notes

More materials about min-max optimization can be found in $[1],[2],[3],[4]$ $[1],[2],[3],[4]$ $[1],[2],[3],[4]$ $[1],[2],[3],[4]$ $[1],[2],[3],[4]$ $[1],[2],[3],[4]$ $[1],[2],[3],[4]$ $[1],[2],[3],[4]$.

References

- [1] Francesco Orabona, *A Modern Introduction to Online Learning*, Chapter 11.
- [2] Jun-Kun Wang, Jacob Abernethy, and Kfir Y. Levy, *No-Regret Dynamics in the Fenchel Game: A Unified Framework for Algorithmic Convex Optimization*, Mathematical Programming, 2023.
- [3] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire, *Fast Convergence of Regularized Learning in Games*, NeurIPS 2015.
- [4] Robert E. Schapire and Yoav Freund, *Boosting: Foundations and Algorithms*, MIT Press, 2012.