
ECE 273 Convex Optimization and Applications Instructor: Jun-Kun Wang
Scribe: Yunzhou Yan May 28, 2024
Editors/TAs: Marialena Sfyraki

Lecture 16: (Continue) Min-Max Optimization

1 Saddle points in min-max optimization

The goal of min-max optimzation
Consider the following optimization problem:

inf
x∈X

sup
y∈Y

g(x, y)

where g : X×Y → R is a given function, X and Y are sets over which the optimization
is performed, inf denotes the infimum (or greatest lower bound), and sup denotes the
supremum (or least upper bound).

Definition of saddle points
Definition 1 (Saddle Points/Nash Equilibrium). Let x ∈ X and y ∈ Y and g(·, ·) :
X × Y → R. A pair of points (x∗, y∗) ∈ X × Y is a saddle point of g(·, ·) if

g(x∗, y) ≤ g(x∗, y∗) ≤ g(x, y∗), ∀x ∈ X, y ∈ Y.

Remark. This condition implies that at the saddle point, g(x∗, y∗) represents a
Nash equilibrium in the sense that no player can unilaterally improve their payoff by
changing their strategy from x∗ or y∗.

Theorem 1. Let g : X × Y → R, where X and Y are non-empty sets. A point
(x∗, y∗) is a saddle point of g if and only if the following conditions are satisfied:

1. The supremum in supy∈Y infx∈X g(x, y) is attained at y∗.

2. The infimum in infx∈X supy∈Y g(x, y) is attained at x∗.

3. Moreover, supy∈Y infx∈X g(x, y) = infx∈X supy∈Y g(x, y).

Remarks.

1. If inf sup and sup inf have different values, then there is no saddle point.
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2. If a saddle point exists, then:

• There might be multiple ones, all of them must have the same minimax
value, i.e., supy∈Y infx∈X g(x, y) = infx∈X supy∈Y g(x, y)

• The set of saddle points is the Cartesian product X∗×Y∗ when nonempty.

• The set x∗ is the optimal solution to infx∈X supy∈Y g(x, y).

• The set y∗ is the optimal solution to supy∈Y infx∈X g(x, y).

Example of No Saddle Points
Consider the function g(x, y) = (x− y)2 with X = [−1, 1] and Y = [−1, 1]. Then, we
evaluate the infimum and supremum as follows:

inf
x∈X

sup
y∈Y

(x− y)2 = inf
x∈X

(1 + |x|)2 = 1,

where the infimum is taken over the maximum value the function can achieve for each
x, realizing that the maximum occurs at the endpoints of Y . Similarly,

sup
y∈Y

inf
x∈X

(x− y)2 = sup
y∈Y

0 = 0,

where the infimum for each y is achieved when x = y, leading to a minimum value of
0 for all y.

This discrepancy between the infimum of the supremum and the supremum of the
infimum indicates that there are no saddle points for g(x, y) = (x−y)2 over the given
domain.

2 Metric to measure the progress of min-max op-
timization

In the context of min-max optimization, it is paramount to quantify the progress
of optimization from the perspectives of participating entities. For a given function
g : X×Y → R, where X and Y represent the strategy sets for two players within the
optimization problem, we define two metrics, ℓ(x) and h(y), to assess progress from
the viewpoints of the x-player and y-player respectively.
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For the x-Player

Define ℓ(x) as the supremum of g(x, y) over all y ∈ Y :

ℓ(x) := sup
y∈Y

g(x, y).

From the x-player’s perspective, the progress is measured as:

ℓ(x)− inf
x∈X

ℓ(x).

For the y-Player

Define h(y) as the infimum of g(x, y) over all x ∈ X:

h(y) := inf
x∈X

g(x, y).

For the y-player’s perspective, the progress is captured by:

sup
y∈Y

h(y)− h(y).

Let g : X × Y → R be a given function, and x̂ ∈ X, ŷ ∈ Y represent specific
selections within their respective domains. By the definition of sup and inf, the
following relation holds:

sup
y∈Y

g(x̂, y) ≥ g(x̂, ŷ) ≥ inf
x∈X

g(x, ŷ).

Combining the optimality gap of each player, we have that

Gap(x̂, ŷ) := ℓ(x̂)− inf
x∈X

ℓ(x) + sup
y∈Y

h(y)− h(ŷ)

= sup
y∈Y

g(x, y)− inf
x∈X

sup
y∈Y

g(x, y) + sup
y∈Y

inf
x∈X

g(x, y)− inf
x∈X

g(x, y)

= sup
y∈Y

g(x̂, y)− inf
x∈X

g(x, ŷ),

where the second-to-the-last line is by assuming the existence of a saddle point.

Definition 2 (Duality Gap). The duality gap Gap(x̂, ŷ) is defined as:

Gap(x̂, ŷ) := sup
y∈Y

g(x̂, y)− inf
x∈X

g(x, ŷ),
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Remark. Duality gap is always non-negative even if the saddle point does not exist.
By the definition of sup and inf, we have

sup
y∈Y

g(x̂, y) ≥ g(x̂, ŷ) ≥ inf
x
g(x, ŷ)

Therefore,

Gap(x̂, ŷ) := sup
y∈Y

g(x̂, y)− inf
x∈X

g(x, ŷ)

= sup
y∈Y

g(x̂, y)− g(x̂, ŷ) + g(x̂, ŷ)− inf
x
g(x, ŷ)

≥ 0.

ϵ-equilibrium / ϵ-saddle point
Assume a saddle point of g(·, ·) exists. Let us define the value v∗ as follows:

v∗ = inf
x∈X

sup
y∈Y

g(x, y) = sup
y∈Y

inf
x∈X

g(x, y).

Definition 3 (ϵ-equilibrium / ϵ-saddle point). A pair (x̂, ŷ) ∈ X × Y is an ε-
equilibrium or ε-saddle point if

v∗ − ε ≤ inf
x∈X

g(x, ŷ) ≤ v∗ ≤ sup
y∈Y

g(x̂, y) ≤ v∗ + ε.

Remark. This definition extends the concept of a saddle point by introducing a
margin of ε, allowing for a near-optimal equilibrium within an ε range of the optimal
value v∗. Using the following inequality,

sup
y∈Y

g(x̂, y) ≥ g(x̂, ŷ) ≥ inf
x∈X

g(x, ŷ),

we can derive the following two inequalities

v∗ − ε ≤ inf
x∈X

g(x, ŷ) ≤ v∗ ≤ g(x̂, ŷ)

g(x̂, ŷ) ≤ sup
y∈Y

g(x̂, y) ≤ v∗ + ε

Thus, the above definition implies that

v∗ − ϵ ≤ g(x̂, ŷ) ≤ v∗ + ϵ.

Lemma 1. Given that the duality gap Gap(x̂, ŷ) ≤ ε and assuming the existence of
a saddle point, it follows that the pair (x̂, ŷ) ∈ X × Y constitutes an ε-equilibrium or
ε-saddle point.
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Proof. By definition of the duality gap

Gap(x̂, ŷ) := sup
y∈Y

g(x̂, y)− inf
x∈X

g(x, ŷ) ≤ ε

⇔ sup
y∈Y

g(x̂, y) ≤ inf
x∈X

g(x, ŷ) + ε.

Given the optimal value
v∗ = inf

x∈X
sup
y∈Y

g(x, y),

it follows from the definition that

v∗ ≤ sup
y∈Y

g(x̂, y).

Therefore, we can establish the chain of inequalities

v∗ = inf
x∈X

sup
y∈Y

g(x, y) ≤ sup
y∈Y

g(x̂, y) ≤ inf
x∈X

g(x, ŷ) + ε.

This sequence demonstrates the relationship between the optimal value v∗, the supre-
mum over y for a fixed x̂, and the adjusted infimum over x for a fixed ŷ by an ε

margin, reflecting the bounds within which v∗ is situated.
The duality gap for a pair (x̂, ŷ) is defined as:

Gap(x̂, ŷ) := sup
y∈Y

g(x̂, y)− inf
x∈X

g(x, ŷ) ≤ ε

This can be equivalently expressed as:

sup
y∈Y

g(x̂, y) ≤ inf
x∈X

g(x, ŷ) + ε ≤ sup
y∈Y

inf
x∈X

g(x, y) + ε = v∗ + ε

Using similar arguments, we can prove the left side of the chain of inequalities.
Therefore, we have proven that

v∗ − ε ≤ inf
x∈X

g(x, ŷ) ≤ v∗ ≤ sup
y∈Y

g(x̂, y) ≤ v∗ + ε.

Definition 4. Given a pair (x̂, ŷ) ∈ X ×Y , it is considered to be an ε-equilibrium or
ε-saddle point if the following condition holds:

v∗ − ε ≤ inf
x∈X

g(x, ŷ) ≤ v∗ ≤ sup
y∈Y

g(x̂, y) ≤ v∗ + ε.
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3 The algorithmic aspect of min-max optimization

Review of online convex optimization

Algorithm 1 Online convex optimization
1: for t = 1, 2, . . . do
2: Commit a point zt with its convex decision space Z ⊂ Rd.
3: Receive a loss function ℓt(·) : Z → R and incurs a loss ℓt(zt).
4: end for

The goal of online convex optimization is to learn to be competitive with the best-
fixed predictor from the convex set S, which is captured by minimizing the regret.
Formally, the regret of the algorithm relative to any fixed benchmark z∗ in Z when
running on a sequence of T examples is defined as

RegretT (z∗) =
T∑
t=1

lt(zt)−
T∑
t=1

lt(z∗).

The regret of the algorithm relative to a convex set Z is defined as

RegretT (Z) = argmax
z∗∈Z

RegretT (z∗)

The x-Player Perspective
Consider the x-player who, at each time step t, plays a strategy xt ∈ X. Upon
choosing this strategy, the x-player receives a loss function defined as:

ℓt(x) := g(x, yt),

where g : X × Y → R is a given function that determines the loss based on the
player’s choice xt and the strategy yt chosen by the opponent at time t.

The y-Player Perspective
From the perspective of the y-player, the game proceeds as follows: at each time step
t, the y-player selects a strategy yt ∈ Y . Upon making this selection, the y-player
receives a loss function, which is defined as:

ht(y) := −g(xt, y),
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where g : X × Y → R is the function determining the outcome based on the strategy
xt chosen by the opponent and the y-player’s own choice y at time t.

Meta-algorithm for solving min-max problems

Algorithm 2 Meta-algorithm for Solving Min-Max Problems
1: Initialize OAlgx (OCO Algorithm for x) and OAlgy (OCO Algorithm for y).
2: Define weight sequence α1, α2, . . . , αT .
3: for t = 1, 2, . . . , T do
4: x plays xt ← OAlgx(α1ℓ1, α2ℓ2, . . . , αt−1ℓt−1)

5: y plays yt ← OAlgy(α1h1, α2h2, . . . , αt−1ht−1)

6: x receives αtℓt(x) := αtg(x, yt)

7: y receives αtht(y) := −αtg(xt, y)

8: end for
9: Output the average strategies xT and yT , where:

xT :=

∑T
t=1 αtxt

AT

, yT :=

∑T
t=1 αtyt
AT

,

with AT :=
T∑
t=1

αt.

From the x-player perspective:

• Play xt ∈ X.

• Receives the loss function at t, αtℓt(x) := αtg(x, yt).

(Weighted) Regret of the x-player:

α-Regretx :=
T∑
t=1

αtℓt(xt)− inf
x∈X

T∑
t=1

αtℓt(x).

(Weighted) Average regret of the x-player:

α−Regretx :=
α-Regretx

AT

,

where AT :=
∑T

t=1 αt.
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From the y-player perspective:

• Play yt ∈ Y .

• Receives the loss function at t, ht(y) := −αtg(xt, y).

(Weighted) Regret of the y-player:

α-Regrety :=
T∑
t=1

αtht(yt)− inf
y∈Y

T∑
t=1

αtht(y).

(Weighted) Average regret of the y-player:

α−Regrety := α-Regrety

AT

,

where AT :=
∑T

t=1 αt.

Guarantees of the meta-algorithm
Theorem 2. Let g(x, y) be convex w.r.t x and concave w.r.t. y. The output (xT , yT )

of the meta-algorithm is an ϵ-equilibrium of g(·, ·), where

ϵ := α−Regretx + α−Regrety.

Also, the duality gap is bounded as

Gap(xT , yT ) := sup
y∈Y

g(xT , y)− inf
x∈X

g(x, yT ) ≤ α−Regretx + α−Regrety.

x-perspective ℓt(x) = g(x, yt)

1

AT

T∑
t=1

αtg(xt, yt) =
1

AT

T∑
t=1

αtℓt(xt)

This expression can further be decomposed into the infimum over x in X of the
weighted outcomes, adjusted by the weighted regret for the x-player, and be simpli-
fied by using the definition of α-Regretx and α-Regretx:

= inf
x∈X

 T∑
t=1

1

AT

αtg(x, yt)

+
α-Regretx

AT

= inf
x∈X

 T∑
t=1

1

AT

αtg(x, yt)

+ α-Regretx (1)
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Using the Jensen’s inequality, we have

≤ inf
x∈X

g

x,

T∑
t=1

αt

At

yt

+ α-Regretx (2)

≤ sup
y∈Y

inf
x∈X

g(x, y) + α-Regretx (3)

y-perspective ht(y) = −g(xt, y)

1

AT

T∑
t=1

αtg(xt, yt) =
1

AT

−
T∑
t=1

αtht(yt)

This expression can further be decomposed into the infimum over y in Y of the
weighted outcomes, adjusted by the weighted regret for the y-player, and be simpli-
fied by using the definition of α-Regrety and α-Regrety:

= − inf
y∈Y

 T∑
t=1

1

AT

αtg(x, yt)

− α-Regrety

AT

= sup
y∈Y

 T∑
t=1

1

AT

αtg(xt, y)

− α-Regrety

Using the Jensen’s inequality, we have

≥ sup
y∈Y

g

 T∑
t=1

αt

At

xt, y

− α-Regrety (4)

≥ inf
x∈X

inf
y∈Y

g(x, y)− α-Regrety (5)

Thus, from (2) and (4), we have

1

AT

T∑
t=1

αtg(xt, yt) ≤ inf
x∈X

g

x,

T∑
t=1

αt

At

yt

+ α-Regretx,

and
1

AT

T∑
t=1

αtg(xt, yt) ≥ sup
y∈Y

g

 T∑
t=1

αt

At

xt, y

− α-Regrety,

which implies that

Gap(x̄T , ȳT ) := sup
y∈Y

g(x̄T , y)− inf
x∈X

g(x, ȳT ) ≤ α− Regretx + α− Regrety.
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First implication
Recall the Theorem:

Theorem 3. Let g(x, y) be convex w.r.t x and concave w.r.t. y. The output (xT , yT )

of the meta-algorithm is an ϵ-equilibrium of g(·, ·), where

ϵ := α−Regretx + α−Regrety.

Also, the duality gap is bounded as

Gap(xT , yT ) := sup
y∈Y

g(xT , y)− inf
x∈X

g(x, yT ) ≤ α−Regretx + α−Regrety.

We have the following implication:
Let g(x, y) be convex w.r.t x and concave w.r.t. y. If the descision space X and Y

are convex and compact and g(·, ·) is Lipschitz continuous, then we know there are
sublinear regret algorithms. This implies our second implication.

Second implication
Theorem 4. Let X,Y be compact convex subsets of Rn and Rm respectively. Let
g(x, y) : X × Y → R be convex in its first argument and concave in its second, and
Lipschitz with respect to both. Then,

min
x∈X

max
y∈Y

g(x, y) = max
y∈Y

min
x∈X

g(x, y).

Proof. From (3) and (5), we have

1

AT

T∑
t=1

αtg(xt, yt) ≤ sup
y∈Y

inf
x∈X

g(x, y) + α-Regretx

and
1

AT

T∑
t=1

αtg(xt, yt) ≥ inf
x∈X

inf
y∈Y

g(x, y)− α-Regrety

we can derive that

sup
y

inf
x
g(x, y) + α-Regretx ≥ inf

x
sup
y

g(x, y)− α-Regrety

⇔ sup
y

inf
x
g(x, y) + α-Regretx + α-Regrety ≥ inf

x
sup
y

g(x, y)

Recall the following lemma in the last lecture:
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Lemma 2. Let g(·, ·) : X × Y → R, where X and Y are not empty. Then,

inf
x∈X

sup
y∈Y

g(x, y) ≥ sup
y∈Y

inf
x∈X

g(x, y)

Therefore, we get

min
x∈X

max
y∈Y

g(x, y) = max
y∈Y

min
x∈X

g(x, y).

The above result together with the following theorem that we saw in the last
lecture imply that a saddle point exsits for when g(x, y) is convex w.r.t x and concave
w.r.t. y, g(·, ·) is Lipschitz continuous, and the descision space X and Y are convex
and compact.

Theorem 5. Let g(x, y) : X × Y → R, where X and Y are not empty. A point
(x∗, y∗) is a saddle point if and only if

• The supremum in supy∈Y infx∈X g(x, y) is attained at y∗ & the infimum in infx∈X supy∈Y g(x, y)

is attained at x∗.

• Also, supy∈Y infx∈X g(x, y) = infx∈X supy∈Y g(x, y).

4 Applications of the min-max theorem

Boosting as a bilinear game
Denote the training set {zj ∈ Rd, lj = {+1,−1}}mj=1. Let H := {hi(·)}ni=1 be a set of
prediction functions, i.e.,

hi(·) : Rd → {+1,−1}.

We can construct the misclassification matrix as

Ai,j =

1 if hi(zj) ̸= lj,

0 otherwise.

We have that

min
x∈∆n

max
y∈∆m

x⊤Ay := min
x∈∆n

max
y∈∆m

n∑
i=1

m∑
j=1

x[i]y[j]I{hi(zj) ̸= lj}
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Assume the existence of a weak learning oracle, i.e.,
m∑
j=1

y[j]I{hi∗(zj) ̸= lj} ≤
1

2
− γ,

where γ > 0. Here, i∗ is the index of the predictor that gives a y-weighted error better
than chance. Furthermore, for any y ∈ ∆m,

min
x∈∆n

x⊤Ay ≤ e⊤i∗Ay ≤
1

2
− γ.

Recall v∗ = maxy∈∆m minx∈∆n x
⊤Ay. These imply that

v∗ ≤
1

2
− γ <

1

2
.

Thus,
max
y∈∆m

min
x∈∆n

x⊤Ay = v∗ ≤
1

2
− γ.

As we know the Nash equilibrium/Saddle points (x∗, y∗) exist,

x∗⊤Ay∗ = v∗ ≤
1

2
− γ.

The above implies that there exists x∗ ∈ ∆n such that

∀j ∈ [m] :
n∑

i=1

x∗[i]I{hi(zj) ̸= lj} = x∗⊤Aej ≤ v∗ ≤
1

2
− γ <

1

2
.

Less than half of the base predictors misclassify when weighted by x∗[i] for each
sample j ∈ [m]. The above implies that

n∑
i=1

x∗[i]I{hi(zj) ̸= lj} = x∗⊤Aej ≤ v∗ ≤
1

2
− γ <

1

2
.

We can correctly classify all the samples using a weighted majority vote.

5 Meta-algorithm for solving min-max problems
(Simultaneously Play)

Instance of the meta-algorithm
OAlgx = FTRL,OMD,OptimisticMD, ...
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Algorithm 3 Meta-algorithm for solving min-max problems (Simultaneously Play)
1: OAlgx (OCO Alg. of x) and OAlgy (OCO Alg. of y).
2: Weight sequence α1, α2, . . . , αT .
3: for t = 1, 2, . . . , T do

4:

x plays xt ← OAlgx(α1ℓ1, α2ℓ2, . . . , αt−1ℓt−1)
y plays yt ← OAlgy(α1h1, α2h2, . . . , αt−1ht−1)

5:

x receives αtℓt(x) := αtg(x, yt)

y receives αtht(y) := −αtg(xt, y)

6: end for
7: Output:

(
xT :=

∑T
t=1 αtxt

AT
, yT :=

∑T
t=1 αtyt
AT

)
, where AT :=

∑T
t=1 αt.

OAlgy = FTRL,OMD,OptimisticMD, ...

Assume that αt = 1 and xT and yT are ϵ−equilibrium points

ϵ = RegretT (OMD)
T

+ RegretT (OMD)
T

= O(
√
T )

T
→ 0, as T →∞

Question: Can we get a better rate than O( 1√
T
)? Yes!

Recall Online Mirror Descent
The function ℓt(z) is convex but not necessarily differentiable. gt ∈ ∂ℓt(zt) is the
subgradient of ℓt(·) at zt.

Algorithm 4 Online Mirror Descent
1: for t = 1, 2, . . . do
2: zt+1 = argminz∈C⟨gt, z − zt⟩+ 1

η
Dϕ

zt(z).

3: end for

Mirror Descent has
T∑
t=1

ℓt(zt)− ℓt(z
∗) ≤ 1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥gt∥2∗,

for any benchmark z∗ ∈ Z.
If the loss ℓt(·) is scaled by αt,

α-Regretz(z∗) ≤
1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥αtgt∥2∗,

13



for any benchmark z∗ ∈ Z.
Assume there is a good guess mt of gt.

Algorithm 5 Optimistic Mirror Descent
1: for t = 1, 2, . . . do
2: zt− 1

2
= argminz∈C αt−1⟨gt−1, z⟩+ 1

η
Dϕ

z
t− 3

2

(z).

3: zt = argminz∈C αt⟨mt, z⟩+ 1
η
Dϕ

z
t− 1

2

(z).

4: end for

We have that

α-Regretz(z∗) ≤ 1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥αt(gt −mt)∥2∗,

for any benchmark z∗ ∈ Z.
By putting two Optimistic Mirror Descent against each other, we can get O( 1

T
) in a

min-max problem, see e.g., [3] for details.

6 Bibliographic notes
More materials about min-max optimization can be found in [1],[2],[3],[4].
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