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Lecture 14: Online Convex Optimization (Continued)

1 Example when FTL Fails
Let the decision space be z = [−1, 1] ⊆ R. Let ℓt(z) = ctz ∈ R where ct =
−0.5 t = 1

1 t is even
−1 t is odd

.

Analysis
1st Round: Let z1 = θ ∈ [−1, 1], c1 = −0.5. Then:

ℓ1(z1) = c1z1 = −0.5 · θ

2nd Round:

z2 = argminz∈[−1,1]ℓ1(z)

= argminz∈[−1,1](−0.5z)
= 1

ℓ2(z2) = c2z2 = 1 · 1 = 1

3rd Round:

z3 = argminz∈[−1,1][ℓ1(z) + ℓ2(z)]

= argminz∈[−1,1](−0.5 + 1)z

= −1

ℓ3(z3) = c3z3 = (−1) · (−1) = 1

4th Round:
z4 = argminz∈[−1,1][ℓ1(z) + ℓ2(z) + ℓ3(z)]

= argminz∈[−1,1](−0.5 + 1− 1)z

= 1

ℓ4(z4) = c4z4 = 1 · 1 = 1
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To summarize, the the loss of FTL is

T∑
t=1

ctzt = −0.5z1 + (T − 1) · 1 = Ω(T ).

On the other hand, in hindsight, if we fix committing z∗ = 0, then

RegretT (z∗) =
T∑
t=1

ℓt(zt)︸ ︷︷ ︸
=Ω(T )

−
T∑
t=1

ℓt(z∗)︸ ︷︷ ︸
=0

=
T∑
t=1

ℓt(zt) = Ω(T ).

2 FTRL
To fix the problem, we need to introduce a regularizer.

2.1 Algorithm: Follow the Regularized Leader (FTRL)

At round t, play

zt = argmin
z∈Z

t−1∑
s=1

ℓs(z) + R(z),

where R(z) : Z → R is strongly convex.

Remark: FTRL on ℓ1, . . . , ℓT is equivalent to FTL on ℓ0 = R, ℓ1, . . . , ℓT .
For FTRL we have

z̃T+1 = argmin
z

T∑
t=1

ℓt(z) + R(z).

For FTL we have

zT+1 = argmin
z

T∑
t=0

ℓt(z),

where we set ℓ0(z) = R(z).

2.2 OGD and FTRL
Algorithm: Online Gradient Descent (OGD)
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Protocol/Setting
1: Init z1 = 0

2: for t = 1, 2, . . . do
3: zt+1 = zt − ηct, where ct ∈ ∂ℓt(zt).
4: end for

Consider

ℓt(z) = ⟨z, ct⟩ and R(z) =
1

2η
∥z∥22

and

zt = argmin
z∈Z

t−1∑
s=1

ℓs(z) + R(z)︸ ︷︷ ︸
:=Φ(z)

Then, we have

∇Φ(zt) = 0⇔
t−1∑
s=1

cs +
1

2η
2z = 0

⇔ zt = −η
t−1∑
s=1

cs

⇔ zt = zt−1 − ηct−1

⇔ zt = zt−1 − η∇ℓt−1(zt−1) , since ℓt(zt) = ct.

Observe that this is OGD.

2.3 Regret of FTRL
In the previous lecture, we proved the following lemma:

Lemma 1. Let z0, z1, z2, . . . , be the sequence of points generated by FTL. Then, for
any benchmark z∗ ∈ Z,

RegretT+1(z∗) =
T∑
t=0

ℓt(zt)−
T∑
t=0

ℓt(z∗) ≤
T∑
t=0

ℓt(zt)−
T∑
t=0

ℓt(zt+1).
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Lemma 2. Let z1, z2, . . . , be the sequence of points generated by FTRL. Then, for
any benchmark z∗ ∈ Z,

RegretT (z∗) =
T∑
t=0

ℓt(zt)−
T∑
t=0

ℓt(z∗)

≤ R(z∗)−R(z1) +
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(zt+1).

Proof. From Lemma 1 we have that:

T∑
t=0

ℓt(zt)−
T∑
t=0

ℓt(z∗) ≤
T∑
t=0

ℓt(zt)−
T∑
t=0

ℓt(zt+1)

Expanding the left-hand side:

T∑
t=0

ℓt(zt)−
T∑
t=0

ℓt(z∗) =

R(z0) +
T∑
t=1

ℓt(zt)

−
R(z∗) +

T∑
t=1

ℓt(z∗)

 .

Expanding the right-hand side:

T∑
t=0

ℓt(zt)−
T∑
t=0

ℓt(zt+1) =

R(z0) +
T∑
t=1

ℓt(zt)

−
R(z1) +

T∑
t=1

ℓt(zt+1)

 .

Note that the two sides share the first term. Therefore, we have that

T∑
t=0

ℓt(zt)−
T∑
t=0

ℓt(z∗) ≤
T∑
t=0

ℓt(zt)−
T∑
t=0

ℓt(zt+1)

⇔
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(z∗) ≤ R(z∗)−R(z1) +
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(zt+1).

The following theorem gives an upper bound of RegretT (z∗) with respect to z∗.

Theorem 1. Suppose ℓt(z) = ⟨z, ct⟩. Let R(z) = 1
2η
∥z∥22. Then FTRL has

RegretT (z∗) ≤
1

2η
∥z∗∥22 + η

T∑
t=1

∥ct∥22

for any z∗.
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Proof. From lemma 2 we have,

RegretT (z∗) ≤ R(z∗)−R(z1) +
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(zt+1)

=
1

2η
∥z∗∥22 −

1

2η
∥z1∥22 +

T∑
t=1

⟨zt, ct⟩ −
T∑
t=1

⟨zt+1, ct⟩

≤ 1

2η
∥z∗∥22 +

T∑
t=1

⟨zt − zt+1, ct⟩

=
1

2η
∥z∗∥22 + η

T∑
t=1

∥ct∥22,

where the last equality was obtained from the fact zt+1 = zt−η∇ℓt(zt) = zt−ηct.

Corollary 1. If additionally to Theorem 1 we have ∥z∗∥2 ≤ D and ∥ct∥2 ≤ G, then
by setting η = D

G
√
2T

, we have

RegretT (z∗) ≤ DG
√
2T

Proof. From Theorem 1, if ∥z∗∥2 ≤ D and ∥ct∥2 ≤ G, then

RegretT (z∗) ≤
1

2η
∥z∗∥22 +

T∑
t=1

η∥ct∥22

=
1

2η
D2 + ηTG2

By setting η = D
G
√
2T

, we have

RegretT (z∗) ≤
G
√
2T

2D
D2 +

D

G
√
2T

TG2

= GD
√
2T

2.4 Online Linear Optimization (OLO)
Below is a statement of the Online Linear Optimization Setting:

Protocol/Setting
1: for t = 1, 2, . . . do
2: Commit a point zt with its convex decision space Z ⊂ Rd.
3: Receive a loss function ℓt(z) = c⊤t zt and incurs a loss ℓt(zt).
4: end for
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We consider the problem of minimizing regret, that is

RegretT (z∗) =
T∑
t=1

⟨ct, zt⟩ −
T∑
t=1

⟨ct, z∗⟩,

where z∗ ∈ Z is any fixed benchmark in Z.
Below is a statement of the Online Convex Optimization Setting:

Protocol/Setting
1: for t = 1, 2, . . . do
2: Commit a point zt with its convex decision space Z ⊂ Rd.
3: Receive a loss function ℓt(·) : Z → R and incurs a loss ℓt(zt).
4: end for

We consider the problem of minimizing regret, that is

RegretT (z∗) =
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(z∗),

where z∗ ∈ Z is any fixed benchmark in Z.

One way to solve a Online Convex Optimization problem is to reduce it to an Online
Linear Optimization problem. Given an algorithm, we can get an upper bound for
OCO regret from the regret of the reduced OLO problem.

First, recall that gx is a subgradient of f : Z → R at x ∈ Z if

f(y) ≥ f(x) + ⟨gx, y − x⟩ , ∀y ∈ Z.

If we let

f(·)← ℓt(·)
gx ← ∇ℓt(·) := ct

y ← z∗

x← zt,

then, by the 1st-order characterization of convexity,

ℓt(zt)− ℓt(z∗)︸ ︷︷ ︸
per-round regret of OCO

≤ ⟨zt − z∗, ct⟩︸ ︷︷ ︸
per-round regret of OLO

,
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where ct is a subgradient of ℓt(·) at zt.

Remark: If ℓt is differentiable, then ct = ∇ℓt(zt) and we obtain

ℓt(zt)− ℓt(z∗)︸ ︷︷ ︸
per-round regret of OCO

≤ ⟨zt − z∗,∇ℓt(zt)⟩︸ ︷︷ ︸
per-round regret of OLO

.

Now, assume that loss functions {ℓt(·)}Tt=1 are convex, and the decision space Z is
convex. Consider we have an OLO algorithm A(·).

1: for t = 1, 2, . . . do
2: Commit a point zt ∈ Z ⊂ Rd, recommended by A(·).
3: Obtain ∇ℓt(zt) ∈ Rd from the Nature.
4: Feed the cost vector ct ← ∇ℓt(zt) ∈ Rd to A(·),

i.e., A(·) receives a loss function ℓ̃t(z) = c⊤t z and incurs a loss ℓ̃t(zt).
5: end for

OLO’s Regret is given by

RegretT (z∗)
OLO =

T∑
t=1

⟨zt,∇ℓt(zt)⟩ −
T∑
t=1

⟨z∗,∇ℓt(zt)⟩.

Thus, the regret of our reduction approach is

RegretT
OCO(z∗) :=

T∑
t=1

ℓt(zt)− ℓt(z∗)

≤
T∑
t=1

⟨zt,∇ℓt(zt)⟩ −
T∑
t=1

⟨z∗,∇ℓt(zt)⟩

= RegretT (z∗)
OLO.

2.5 Regret of FTRL with Lipschitz Loss Functions
Lemma 3. Let R : Z → R be a µ-strongly convex function over Z the decision space
with respect to a norm ∥ · ∥. If ℓt is Gt-Lipschitz with respect to ∥ · ∥, then

ℓt(zt)− ℓt(zt+1) ≤ Gt∥zt − zt+1∥ ≤
G2

t

µ

Proof. Define Ft(z) =
∑t−1

s=1 ℓs(z) + R(z). Then zt = argminz∈Z Ft(z).
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By strong convexity,

Ft(zt+1) ≥ Ft(zt) + ⟨zt+1 − zt,∇Ft(zt)⟩+
µ

2
∥zt+1 − zt∥2

and
Ft(zt) ≥ Ft(zt+1) + ⟨zt − zt+1,∇Ft(zt+1)⟩+

µ

2
∥zt − zt+1∥2

.
Note that ∇Ft(zt) = 0 and ∇Ft(zt+1) = 0 from optimality.
Combine them together:

Ft+1(zt)− Ft(zt) ≥ Ft+1(zt+1)− Ft(zt+1) + µ∥zt − zt+1∥2

The last inequality is equivalent to

ℓt(zt)− ℓt(zt+1) ≥ µ∥zt − zt+1∥2

.
Finally, to prove the lemma, note that ∥ℓt(zt) − ℓt(zt+1)∥ ≤ Gt∥zt − zt+1∥ from

Lipschitz condition, and hence Gt∥zt − zt+1∥ ≥ µ∥zt − zt+1∥2. Rearrange to get
Gt∥zt − zt+1∥ ≤ G2

t

µ
.

Theorem 2. Suppose each lt(·) is convex and Gt-Lipschitz w.r.t. a norm ∥ · ∥. Then
FTRL with a µ-strongly convex regularizer R(·) satisfies:

RegretT (z∗) ≤ R(z∗)−R(z1) +
TG2

µ

where G := maxt(Gt).

Proof.

RegretT (z∗) =
T∑
t=0

(ℓt(zt)− ℓt(z∗))

≤ R(z∗)−R(z1) +
T∑
t=1

(ℓt(zt)− ℓt(zt+1))

≤ R(z∗)−R(z1) +
T∑
t=1

G2
t

µ

≤ R(z∗)−R(z1) +
TG2

µ

The first inequality comes from lemma 2.
The second inequality comes from lemma 3.
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3 Application: Prediction with Experts’ Advice

3.1 Prediction with Experts’ Advice
Suppose now that the learner’s decision space is the probability simplex:

∆n := {z ∈ Rn :
n∑

i=1

z[i] = 1, z[i] ≥ 0}

We note that ∆n in this case defines a discrete probability distribution. In this case,
OLO at each time step has the following interpretation:

At each time t, a player plays zt ∈ ∆n, and receives a cost vector ct. We have that

ℓt(zt) = ⟨zt, ct⟩

=
n∑

i=1

zt[i]ct[i]

=
n∑

i=1

P (it = i)ct[i]

= Eit∼zt [ct[it]].

The loss function ℓt(zt) gives us the expected cost at each time step t.

Now, consider a more concrete example. Suppose again that we have

Z = ∆n :=
{
z ∈ Rn :

n∑
i=1

z[i] = 1, z[i] ≥ 0
}

Then, using the FTRL approach we have:

At round t, play

zt = argmin
z∈Z

t−1∑
s=1

ℓs(z) + R(z),

where R(z) is µ-strongly convex. Suppose additionally that each ℓt(·) is convex and
Gt-Lipschitz w.r.t. a norm ∥ · ∥, that is

|ℓt(x)− ℓt(y)| ≤ Gt∥x− y∥.

Then, recall Theorem 2 in section 2.5:
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Theorem 2: Suppose each ℓt(·) is convex and Gt-Lipschitz w.r.t. a norm ∥ · ∥. Then,
FTRL with a µ-strongly convex regularizer R(·) satisfies:

RegretT (z∗) ≤ R(z∗)−R(z1) +
TG2

µ
,

where G := maxt(Gt).

Below we give a general example of application of this theorem.

Example 1: Suppose each ℓt(·) satisfies the above conditions, and R(·) ← µ
2
∥ · ∥2.

Then we have,

RegretT (z∗) ≤
µ

2
∥z∗∥2 + TG2

µ

≤ µD2

2
+

TG2

µ
(Suppose the decision space is bounded by D)

= GD
√
T +GD

√
T (Set µ to be G

√
T

D
)

= O(GD
√
T )

This result shows us that the regret is bounded sublinearly w.r.t. T . We now turn to
a specific problem of prediction with expert advice.

Example 2: Suppose

Z = ∆n :=
{
z ∈ Rn :

n∑
i=1

z[i] = 1, z[i] ≥ 0
}

and consider FTLR:

At round t, play

zt = argmin
z∈Z

t−1∑
s=1

ℓs(z) + ηϕ(z),

where ϕ(z) : Z → R is strongly convex. Let ϕ(z) :=
∑d

i=1 zi log zi be the negative
entropy, which is 1-strongly convex w.r.t. ∥ · ∥1 (this was proved in HW1).
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Recall that ℓt(z) = ⟨z, ct⟩. It is easy to show that lt(·) is convex. To show lt(·) is
Gt-Lipschitz, we note that

lt(x)− lt(y) = ⟨x, ct⟩ − ⟨y, ct⟩
= ⟨x− y, ct⟩
≤ ∥ct∥∞∥x− y∥1 (Holder’s inequality)

Assume additionally that the cost is bounded, that is ∀i ∈ [d], ct[i] ∈ [0, 1], we have

∥ct∥∞ = max
i

(ct[i]) ≤ 1.

This result implies that
lt(x)− lt(y) ≤ ∥x− y∥1.

Thus, each lt(·) is Gt-Lipschitz w.r.t. L1-norm. On the other hand, since we know
that R(z) (the negative entropy) is 1-strongly convex w.r.t. L1-norm, all conditions
of theorem 2.5 are satisfied. Recall again that the theorem gives us:

RegretT (z∗) ≤ R(z∗)−R(z1) +
TG2

η

= ηϕ (z∗)− ηϕ (z1) +
TG2

η

To further proceed, we need the following lemma:

Lemma: Let ϕ(z) =
∑n

i=1 zi log zi be negative entropy. Then,

max
z∈∆n

ϕ(z)− min
z∈∆n

ϕ(z) = log n.

With this lemma, we can get:

RegretT (z∗) = ηϕ (z∗)− ηϕ (z1) +
TG2

η

≤ η log n+
TG2

η

= O
(
G
√

log(n)T
)

(Setting η =

√
TG2

log n
)

Remark: This result tells us that the regret depends logarithmically on the number
of experts/items (i.e.,

√
log n), which is in contrast to the case of using the squared

11



of the l1 norm as the regularizer (i.e.,
√
n).

Update: The update of z at each t is:

zt = argmin
z∈∆n

t−1∑
s=1

⟨z, cs⟩+ η
n∑

i=1

zi log zi

The update step has a closed form solution, for each i ∈ [n],

zt[i] =
exp(−η

∑t−1
i=1 cs[i])∑n

j=1 exp(−η
∑t−1

i=1 cs[j])

This is known as Multiplicative Weight update. The weights are updated multiplica-
tively and iteratively according to the feedback of how well an expert performed:
reducing it in case of poor performance (large loss), and increasing it otherwise.

3.2 An Intuitive Interpretation
Suppose that we are investing on stocks and receive advice from three different experts.
ct[i] gives us the observed cost of choosing the advice of expert i at time t. At the
end of turn t, zt[i] indicates the current weight we give to the advice of expert i (how
much confidence we currently have in that expert).
Based on the previous analysis, lt(zt) = Eit∼zt [ct[it]] gives us the expected cost based
on the current weight at time t. The cumulative regret corresponds to the total extra
cost of distributing the capital as we did, in comparison to the best/benchmark path
in hindsight.
Moreover, the update

zt[i] =
exp(−η

∑t−1
i=1 cs[i])∑n

j=1 exp(−η
∑t−1

i=1 cs[j])

indicates that if the cumulative cost of trusting expert i is high, then the confidence
we have in it should become low, and vice versa.

4 Online Mirror Descent
Recall first the Mirror Descent:

Mirror Descent Algorithm: Suppose f(z) is convex but not necessarily differen-
tiable. gt ∈ ∂f(zt) is the sub-gradient of f(·) at zt.
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1: for t = 1, 2, . . . do
2: zt+1 = argminz∈C⟨gt, z − zt⟩+ 1

η
Dϕ

zt(z).

3: end for

In discussing Mirror Descent, we proved the following theorem:

Theorem 3. Choose a generating function ϕ(z) that is 1-strongly convex w.r.t. some
norm ∥ · ∥. Then, Mirror Descent has

T∑
t=1

f(zt)− f(z∗) ≤ 1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥gt∥2∗,

where gt ∈ ∂f(zt) is the sub-gradient of f(·) at zt and Dϕ
z (z∗) is the initial Bregman

Divergence.

For Online Mirror Descent, the algorithm is modified to be as follows:

Online Mirror Descent Algorithm Suppose ℓt(z) is convex but not necessarily
differentiable. gt ∈ ∂ℓt(zt) is the sub-gradient of ℓt(·) at zt.

1: for t = 1, 2, . . . do
2: zt+1 = argminz∈C⟨gt, z − zt⟩+ 1

η
Dϕ

zt(z)

3: end for

As the two algorithms are essentially identical, OMD admits a similar theorem:

Theorem 4. Choose a generating function ϕ(z) that is 1-strongly convex w.r.t. some
norm ∥ · ∥. Then, Mirror Descent has

RegretT (z∗) =
T∑
t=1

ℓ(zt)− ℓ(z∗) ≤ 1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥gt∥2∗,

where gt ∈ ∂f(zt) is the sub-gradient of f(·) at zt and Dϕ
z (z∗) is the initial Bregman

Divergence.

The two proofs are similar, so we only prove the latter one here.
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Proof. Since ℓt(·) is convex, by the first-order condition of convexity we have:

f(x∗) ≥ lt(zt) + ⟨∇lt(zt), z∗ − zt⟩ (1)
⇔ l(zt)− l(z∗) ≤ ⟨gt, zt − z∗⟩ (by rearrangement) (2)

= ⟨gt, xt − xt+1 + xt+1 − x∗⟩ (3)
= ⟨gt, xt − xt+1⟩+ ⟨gt, xt+1 − x∗⟩ (4)

Since zt+1 = argminz∈C⟨gt, z − zt⟩+ 1
η
Dϕ

zt(z), by the optimality condition we have:〈
gt +

1

η
(∇ϕ(zt+1)−∇ϕ(zt)), z − zt+1

〉
≥ 0, ∀z ∈ C

Set z ← z∗ gives us:

⟨gt +
1

η
(∇ϕ(zt+1)−∇ϕ(zt)), z∗ − zt+1⟩ ≥ 0

⇔⟨gt, z∗ − zt+1⟩+
1

η
⟨∇ϕ(zt+1)−∇ϕ(zt), z∗ − zt+1⟩ ≥ 0

⇔⟨gt, zt+1 − z∗⟩ ≤
1

η
⟨∇ϕ(zt+1)−∇ϕ(zt), z∗ − zt+1⟩

Plug this result back into (5) gives us:

f(zt)− f(z∗) ≤
1

η
⟨∇ϕ(zt+1)−∇ϕ(zt), z∗ − zt+1⟩+ ⟨gt, zt − zt+1⟩ (5)

Now, to further proceed, we need the following lemma:

Lemma: (Three Point Equality) ∀x, y, z ∈ C,

⟨∇ϕ(x)−∇ϕ(y), z − x⟩ = Dϕ
y (z)−Dϕ

x(z)−Dϕ
y (x)

Applying this result to (5), we get:

ℓt(zt)− ℓt(z∗) ≤
1

η

(
Dϕ

zt(z∗)−Dϕ
zt+1

(z∗)−Dϕ
zt(zt+1)

)
+ ⟨gt, zt − zt+1⟩.

Fact: (Fenchel Young Inequality)

⟨u, v⟩ ≤ η

2
∥u∥2 + 1

2η
∥v∥2∗

Apply F-Y inequality to the second term of the RHS of the previous inequality, and
we get:

ℓt(zt)− ℓt(z∗) ≤
1

η

(
Dϕ

zt(z∗)−Dϕ
zt+1

(z∗)−Dϕ
zt(zt+1)

)
+

η

2
∥gt∥2∗ +

1

2η
∥zt − zt+1∥2.

14



Finally, by 1-strong convexity, we can derive that

Dϕ
zt+1

(zt) ≥
1

2
∥zt − zt+1∥2.

Plugging in this result, we get

ℓt(zt)− ℓt(z∗) ≤
1

η

(
Dϕ

zt(z∗)−Dϕ
zt+1

(z∗)
)
+

η

2
∥gt∥2∗,

for any feasible t.
Taking the sum of these inequalities over all t = 1, 2, . . . , T gives us

T∑
t=1

ℓt(zt)− ℓt(z∗) ≤
1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥gt∥2∗.

5 Optimistic Mirror Descent
Optimistic Mirror Descent is an algorithm modified from online mirror descent. The
algorithm is as follows:

Optimistic Mirror Descent: Suppose ℓt(z) is convex but not necessarily differen-
tiable. gt ∈ ∂ℓt(zt) is the sub-gradient of ℓt(·) at zt. Assume there is a good guess mt

of gt.

1: for t = 1, 2, . . . do
2: zt− 1

2
= argminz∈C⟨gt−1, z⟩+ 1

η
Dϕ

z
t− 3

2

(z).

3: zt = argminz∈C⟨mt, z⟩+ 1
η
Dϕ

z
t− 1

2

(z).

4: end for

The algorithm aims to make use of the estimation mt and attempts to incorporate the
result of online mirror descent and the initial estimation to achieve a more optimal
outcome. It admits the following bound:

RegretT (z∗) ≤
1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥gt −mt∥2∗

From the bound, if the guess mt is close to gt, then the regret can be potentially
better than O(

√
T ) of those non-optimistic variants, e.g., Online Mirror Descent.
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Moreover, even if the guess mt is a poor estimate of gt, it can still have O(
√
T ) regret

as those non-optimistic variants. Specifically, if the size of both mt and gt is bounded
by G, then the second term of the regret bound above can be upper-bounded as

∥gt −mt∥2∗ ≤ (∥gt∥2∗ + ∥mt∥2∗) ≤ 4G2

Thus, the regret bound is still O(
√
T ) with an appropriately chosen η.

Bibliographic notes
The following materials are recommended for further studies: [Hazan (2019)], [Orabona (2020)],
and [Erven (2021)].
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