
ECE 273 Convex Optimization and Applications Instructor: Jun-Kun Wang
Scribe: Animesh Singhal, Shantanu Shukla, Rohan Nagrik May 14, 2024
Editor/TA: Marialena Sfyraki

Lecture 13: Mirror Descent (Continued) and Online Convex
Optimization

1 Review

1.1 Mirror Descent

Let ϕ(·) : C → R be convex and differentiable. The Bregman divergence induced by
ϕ(·) is defined as:

Dϕ
y (x) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩.

Algorithm 1 Mirror Descent
1: Input: Step size η.
2: for k = 1, 2, . . . do
3: xk+1 = argminx∈C⟨∇f(xk), x− xk⟩+ 1

η
Dϕ

xk
(x).

4: end for

1.2 Example: Probability Simplex

Suppose C := {x ∈ Rd :
∑d

i=1 xi = 1, xi ≥ 0} is the probability simplex. The mirror
descent update is:

xk+1 = argmin
x∈C

⟨∇f(xk), x− xk⟩+
1

η

d∑
i=1

xi log
xi

xk,i

.

The update for each coordinate i ∈ [d] is:

xk+1,i =
xk,i exp(−η[∇f(xk)]i)∑d
j=1 xk,j exp(−η[∇f(xk)]j)

.

1.3 Theorem: Mirror Descent Convergence

Theorem 1. Choose a generating function ϕ(x) that is 1-strongly convex w.r.t. ∥ · ∥.
Then, Mirror Descent has:

K∑
k=1

f(xk)− f(x∗) ≤
1

η
Dϕ

x1
(x∗) +

K∑
k=1

η

2
∥gk∥2∗.

1

1.4 Comparison: Mirror Descent vs. Projected Gradient De-
scent

For the problem minx∈C f(x), where C is the simplex ∆d := {x ∈ Rd :
∑d

i=1 x[i] =

1, x[i] ≥ 0,∀i}:

• Projected Gradient Descent: ϵ = O

(√
d
K

)
, where K is the number of iterations.

• Mirror Descent: ϵ = O

(√
log d
K

)
.

2 Alternative View of Mirror Descent

We’ve previously formulated the optimization of a function using mirror descent.
Now, let’s explore the geometric intuition behind the term ’Mirror’ by discussing an
alternate representation of the mirror descent process.

2.1 Mirror Descent Update

The Mirror Descent update can be expressed as:

xk+1 = argmin
x∈C

(
⟨∇f(xk), x− xk⟩+

1

η
Dϕ

xk
(x)

)
.

For a distance-generating function ϕ(·) that is closed and convex, with a differentiable
conjugate ϕ∗(·), this can be equivalently written as:

∇ϕ(yk+1) = ∇ϕ(xk)− η∇f(xk),

yk+1 = ∇ϕ ∗ (∇ϕ(xk)− η∇f(xk)
)
,

xk+1 = argmin
x∈C

Dϕ
yk+1

(x).

We will use the Fenchel Inequality to demonstrate the equivalence between these two
representations.

2.2 Fenchel Conjugate and Inequality

Given a function f(·), its Fenchel Conjugate is defined as:

f ∗(y) = sup
x∈dom(f)

(
y⊤x− f(x)

)
.

2

Theorem 2 (Fenchel Inequality). For any x and y:

f ∗(y) ≥ y⊤x− f(x).

Remark: Intuitively, this inequality holds because the supremum of an expression is
always at least as large as the expression itself.

Question: When do we have the equality, i.e. f ∗(y) = y⊤x− f(x)?
Answer: When the supremum is attained.

2.2.1 Closed functions

A function is closed if its sublevel set is a closed set, i.e.,

{x ∈ dom(f) : f(x) ≤ α} is a closed set.

2.2.2 Equality in Fenchel Inequality

Theorem 3. If f(·) is closed and convex, then:

f ∗(y) + f(x) = y⊤x ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(y).

Remark: When f(·) is differentiable, Theorem 2 implies:

f ∗(y) + f(x) = y⊤x ⇐⇒ y = ∇f(x) ⇐⇒ x = ∇f ∗(y).

We have two important results follow from these definitions:

1. For the maximization problem:

argmax
x

⟨x, y⟩ − f(x),

the solution is x ∈ ∂f ∗(y). This is because when ⟨x, y⟩ − f(x) is maximized,
Fenchel’s inequality holds as an equality, implying:

⟨x, y⟩ − f(x) = f ∗(y) =⇒ x ∈ ∂f ∗(y).

2. For the maximization problem:

argmax
y

⟨y, x⟩ − f ∗(y),

the solution is y ∈ ∂f(x). Applying Fenchel’s inequality in reverse gives:

f(x) = sup
y∈dom(f∗)

(
yTx− f ∗(y)

)
.

3

Therefore, when ⟨y, x⟩ − f ∗(y) is maximized, Fenchel’s inequality holds as an
equality, implying:

⟨y, x⟩ − f ∗(y) = f(x) =⇒ y ∈ ∂f(x).

Thus, the Fenchel conjugate of the Fenchel conjugate of x is x itself, confirming
that y ∈ ∂f(x).

2.2.3 Inverse Map

Theorem 4. Suppose that f(·) is closed and convex. Then, y ∈ ∂f(x) if and only if
x ∈ ∂f ∗(y).

Remark: This result implies that the gradient map has an inverse when the function
is differentiable, and the inverse is the gradient of the conjugate function. In fact, when
the function and its conjugate are differentiable, this yields the fact that y = ∇f(x) if
and only if x = ∇f ∗(y). Observe that if we have

y = ∇f(x),

then if we let x = ∇f ∗(y), we get

y = ∇f
(
f ∗(y)

)
.

Similarly, if we have

x = ∇f ∗(y),

then if we let y = ∇f(x), we get

x = ∇f ∗ (∇f(x)
)
.

Since f is convex and closed, ∇f and ∇f ∗ are inverses of each other:

∇f(∇f ∗(x)) = x,

∇f ∗(∇f(y)) = y.

This result is given by the following theorem.

Theorem 5. If a differentiable function ϕ(·) : Rd → R is closed and convex, then:

y = ∇ϕ(x) ⇐⇒ x = ∇ϕ∗(y).

4

2.3 Geometric Picture of Mirror Descent

The first step of alternative mirror descent representation can be written as:

∇ϕ(yk+1) = ∇ϕ(xk)− η∇f(xk),

∇ϕ∗ (∇ϕ(yk+1)
)
= ∇ϕ∗ (∇ϕ(xk)− η∇f(xk)

)
,

yk+1 = ∇ϕ∗ (∇ϕ(xk)− η∇f(xk)
)
.

The second step involves:

xk+1 = argmin
x∈C

Dϕ
yk+1

(x).

To understand the geometric intuition of mirror descent, consider these steps:

Figure 1: Mirror descent: Geometric picture

1. Mapping to Another Space: Use ∇ϕ(·) to map xk to a new space, leveraging
the geometry induced by ϕ(·).

2. Gradient Step in the New Space: Take a step in the direction of the negative
gradient of f , yielding ∇ϕ(yk+1).

3. Inverse Mapping: Map back to the original space using ∇ϕ∗(·), bringing us to
yk+1.

4. Projection Back to the Constraint Set: Project yk+1 back onto C by minimizing
the Bregman divergence Dϕ

yk+1
(x):

xk+1 = argmin
x∈C

Dϕ
yk+1

(x).

5

Proof of Equivalency

xk+1 = argmin
x∈C

⟨∇f(xk), x− xk⟩+
1

η
Dϕ

xk
(x) (primal view)

= argmin
x∈C

η∇f(xk)
⊤x+ ϕ(x)− ϕ(xk)− ⟨∇ϕ(xk), x− xk⟩ (def. of Bregman divergence)

= argmin
x∈C

ϕ(x)− (∇ϕ(xk)− η∇f(xk))
⊤x (keeping terms depending on x)

= argmin
x∈C

ϕ(x)− (∇ϕ(yk+1))
⊤x (first step of alternative view)

= argmin
x∈C

ϕ(x)− ϕ(yk+1)− ⟨∇ϕ(yk+1), x− yk+1⟩ (adding terms not depending on x)

= argmin
x∈C

Dϕ
yk+1

(x) (def. of Bregman divergence)

3 Online Convex Optimization

Online convex optimization (OCO) lies at the intersection between learning and convex
optimization. Most Online Convex Optimization scenarios follow the following generic
protocol:

Algorithm 2 Protocol/Setting
1: for t = 1, 2, . . . , T do
2: Commit a point zt with its convex decision space Z ⊂ Rd.
3: Receive a convex loss function ℓt(·) : Z → R and incur a loss ℓt(zt).
4: end for

The objective of Online Convex Optimization (OCO) is to perform comparably
to any preset benchmark or reference within a convex decision space, denoted as Z.
Specifically, the algorithm’s regret compared to any fixed benchmark or reference
point z∗ ∈ Z is calculated as follows:

RegretT (z∗) :=
T∑
t=1

ℓt(zt)︸ ︷︷ ︸
cumulative loss of learner

−
T∑
t=1

ℓt(z∗)︸ ︷︷ ︸
cumulative loss of benchmark

,

where T is the number of total rounds. We wish to achieve sub-linear regret i.e.

RegretT (z∗) = o(T).

6

That is, we wish to have

RegretT (z∗)
T︸ ︷︷ ︸

average regret

→ 0 as T → ∞.

Thus, we need the average regret to be vanishing over time.

Question: Why not compete with the best action at each time step ?

T∑
t=1

ℓt(zt)−
T∑
t=1

min
z

ℓt(z) = Ω(T).

Answer: The reason is that we only learn the loss ℓt(·) after we have already made
our decision zt within the decision space Z. Based on the metric in the above equation,
if we choose anything apart from the point that minimizes the loss function ℓt(·) for
each time-step, we’ll inevitably incur some loss. As a result, the value of the above
equation will increase linearly with T . This issue leads us to focus on “regret” relative
to a consistent benchmark action z∗, instead of always trying to minimize the loss at
each step.

3.1 Online Linear Optimization

This is a special case of Online Convex Optimization where the cost function lt is
linear in z at each time-step i.e. lt(z) = cTt zt

Algorithm 3 Protocol/Setting
1: for t = 1, 2, . . . do
2: Commit a point zt with its convex decision space Z ⊆ Rd.
3: Receive a loss function ℓt(z) = c⊤t z and incur a loss ℓt(zt).
4: end for

The regret of OCO can be bounded by the regret of OLO using the property of
sub-gradients. If gx is a sub-gradient of f(x) at x then :

f(y) ≥ f(x) + ⟨gx, y − x⟩, ∀y ∈ C

ℓt(zt)− ℓt(z∗)︸ ︷︷ ︸
per-round regret of OCO

≤ ⟨zt − z∗, ct⟩︸ ︷︷ ︸
per-round regret of OLO

,

where ct is the sub-gradient of lt(·) at zt.

7

3.2 Follow-the-Leader (FTL)

In this algorithm, at the first time step we select some initial vector to start with and
in the subsequent time-steps, we choose the vector with the minimum loss across all
preceding time-steps (or rounds). The algorithm is given below:

Algorithm 4 Follow-the-Leader (FTL)
1: Input a convex decision space Z ⊆ Rd and zinit ∈ Z.
2: for t = 1, 2, . . . do
3: if t = 1 then
4: Commit zt = zinit

5: else
6: Commit zt = argminz∈Z

∑t−1
s=1 ℓs(z).

7: end if
8: Receive a convex loss function ℓt(·) : Z → R and incur a loss ℓt(zt).
9: end for

Lemma 1. Let z1, z2, . . . be the sequences of points generated by FTL. Then for any
reference z∗ ∈ Z:

RegretT (z∗) =
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(z∗) ≤
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(zt+1)

Remark: Before moving on to the proof of the Lemma, we can see that subtracting∑T
t=1 ℓt(zt) would yield

T∑
t=1

ℓt(zt+1) ≤
T∑
t=1

ℓt(z∗).

Proof. We proceed by induction. We prove this inequality by induction. The base
case of T = 1 follows directly from the definition of zt+1 i.e.

z2 = argmin
z∈Z

ℓ1(z) ⇒ ℓ1(z2) ≤ ℓ1(z), ∀z ∈ Z.

Thus, if we choose z = z∗, we have that

ℓ1(z2) ≤ ℓ1(z∗)

Assume the inequality holds for t = T − 1. Then for all z∗ ∈ Z, we have

T−1∑
t=1

ℓt(zt+1) ≤
T−1∑
t=1

ℓt(z∗)

8

Now adding lT (zT+1) to both sides gives that for all z∗ ∈ Z, we have

ℓT (zT+1) +
T−1∑
t=1

ℓt(zt+1) ≤ ℓT (zT+1) +
T−1∑
t=1

ℓt(z∗).

⇐⇒
T∑
t=1

ℓt(zt+1) ≤ ℓT (zT+1) +
T−1∑
t=1

ℓt(z∗).

Since the above holds for all z∗ ∈ Z we can choose z∗ = zT+1, which implies

T∑
t=1

ℓt(zt+1) ≤
T∑
t=1

ℓT (zT+1)

≤
T∑
t=1

ℓT (z∗), ∀z∗ ∈ Z,

where we used the fact that zT+1 = argminz∈Z
∑T

t=1 lT (z). Thus, the inductive
argument is complete.

Theorem 6. Consider ℓt(z) =
1
2
||z − ct||22. Assume maxt||ct|| ≤ G. Then FTL has a

regret at most :

RegretT (z
∗) ≤ 4G2(log(T) + 1), for any z∗ ∈ Rd.

for any z∗ ∈ Rd.

Proof. We assume Z = Rd. Using the FTL rule:

zt = argmin
z∈Z

t−1∑
s=1

ℓs(z)

= argmin
z∈Z

t−1∑
s=1

∥z − cs∥22

= argmin
z∈Z

F (z)

Since F (z) is convex, we have:

∂F (zt)

∂z
=

t−1∑
s=1

2(zt − cs) = 0 =⇒ zt =
1

t− 1

t−1∑
s=1

cs

9

where zt is the average of c1, c2, . . . ct−1. This can now be rewritten as:

zt+1 =
1

t

(
ct + (t− 1)zt

)︸ ︷︷ ︸∑t
s=1 cs

=

(
1− 1

t

)
zt +

1

t
ct.

By subtracting ct from both sides, we get:

zt+1 − ct =

(
1− 1

t

)
zt +

(
1

t
− 1

)
ct =

(
1− 1

t

)
(zt − ct).

Therefore,

ℓt(zt)− ℓt(zt+1) =
1

2
∥zt − ct∥22 −

1

2
∥zt+1 − ct∥22

=
1

2
∥zt − ct∥22 −

1

2

(
1− 1

t

)2

∥zt − ct∥22

=
1

2

(
1−

(
1− 1

t

)2
)
∥zt − ct∥22

=
1

2

(
1− 1 +

2

t
− 1

t2

)
∥zt − ct∥22

≤ 1

2

(
2

t

)
∥zt − ct∥22

=
1

t
∥zt − ct∥22

Let G = maxt||ct||. We have zt ≤ G since zt is the average of c1, . . . , ct−1 and hence,
by the Triangle Inequality we get ||zt − ct||2 ≤ 2G. We therefore obtain:

ℓt(zt)− ℓt(zt+1) =
1

t
∥zt − ct∥22

=
1

t

(
∥zt − ct∥2

)2
≤ 1

t

(
∥zt∥2 + ∥ct∥2

)2
≤ 1

t
(2G)2.

Summing over t = 1, . . . , T we obtain:

T∑
t=1

(ℓt(zt)− ℓt(zt+1)) ≤ (2G)2
T∑
t=1

1

t
.

10

Now using induction, we prove the inequality:

T∑
t=1

1

t
≤ log(T) + 1,

For the base case T = 1 it is obviously true that:

1∑
t=1

1

t
= 1 ≤ log(1) + 1 = 1.

Let’s assume that the inequality holds for T − 1. Thus we have:

T−1∑
t=1

1

t
≤ log(T − 1) + 1.

Observe that we have:

log(T) + 1 = log

(
(T − 1)

T

T − 1

)
+ 1

= log(T − 1) + log(
T

T − 1
) + 1

≥
T−1∑
t=1

1

t
+ log(

T

T − 1
)

Using the fact that log(x) ≥ 1− 1
x
, we get log(T

T−1
) ≥ 1

T
, which after substitution in

the above equation gives:

log(T) + 1 ≥
T−1∑
t=1

1

t
+

1

T
=

T∑
t=1

1

t
.

Combining the above inequality with Lemma 1 and using the fact that:

T∑
t=1

1

t
≤ log(T) + 1,

we derive:

RegretT (z
∗) ≤

T∑
t=1

(ℓt(zt)− ℓt(zt+1)) ≤ (2L)2
T∑
t=1

1

t
≤ 4L2(log(T) + 1),

which completes the proof.

11

	Review
	Mirror Descent
	Example: Probability Simplex
	Theorem: Mirror Descent Convergence
	Comparison: Mirror Descent vs. Projected Gradient Descent

	Alternative View of Mirror Descent
	Mirror Descent Update
	Fenchel Conjugate and Inequality
	Closed functions
	Equality in Fenchel Inequality
	Inverse Map

	Geometric Picture of Mirror Descent

	Online Convex Optimization
	Online Linear Optimization
	Follow-the-Leader (FTL)

