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Lecture 12: Mirror Descent

1 Projected Gradient Descent and Bregman Diver-
gence

Recall from previous lectures that the Projected Gradient Descent (PGD) algorithm
can be used to solve constrained optimization problems. Consider the following
optimization problem:

min
x∈C

f(x)

PGD involves applying the following steps when initialized at x1 and using a step size
of η:

Algorithm 1 Projected Gradient Descent
1: for k = 1, 2, · · · do
2: xk+1 = ProjC [xk − η∇kf(xk)]

3: end for

As proved in the first homework assignment, the above expression is equivalent to the
following:

Algorithm 2 Projected Gradient Descent
1: for k = 1, 2, · · · do
2: xk+1 = argminx∈C⟨∇f(xk), x− xk⟩+ 1

2η ||x− xk||22
3: end for

Notice that the second expression contains a term involving the squared Euclidean
norm. A key idea of Mirror Descent is to generalize this algorithm to consider metrics
other than the Euclidean norm, and we will do so using the notion of the Bregman
Divergence.

Definition 1. (Bregman Divergence) Let ϕ(·) : C → R be a convex and differen-
tiable function. The Bregman divergence induced by ϕ(·) is defined as

Dϕ
y (x) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩.

ϕ(x) is called the distance-generating function. The Bregman divergence is thus the
difference between ϕ(x) and its linear approximation, ϕ(y) + ⟨∇ϕ(y), x− y⟩, at y.
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Figure 1: Bregman Divergence (shown in purple) between two points x and y with
respect to a convex function ϕ (shown in blue). The tangent to the curve is shown in
red.

2 Mirror Descent Algorithm

The Mirror Descent (MD) algorithm was proposed by Arkadi Nemirovsky and David
Yudin in 1983, and is described below.

Algorithm 3 Mirror Descent
1: for k = 1, 2, · · · do
2: xk+1 = argminx∈C⟨∇f(xk), x− xk⟩+ 1

ηD
ϕ
xk(x)

3: end for

Remark: PGD is an instance of MD where ϕ(x) = 1
2
||x||22. In this instance, ∇ϕ(x) = x.

Furthermore, we have:

Dϕ
xk
(x) =

1

2
(∥x∥22 − ∥xk∥22)− ⟨xk, x− xk⟩ =

1

2
(∥x∥22 − ∥xk∥22 − 2⟨xk, x− xk⟩)

=
1

2
(∥x∥22 − ∥xk∥22 − 2⟨xk, x⟩+ 2⟨xk, xk⟩) =

1

2
(∥x∥22 + ∥xk∥22 − 2⟨xk, x⟩)

=
1

2
∥x− xk∥22.

2.1 Example: Mirror Descent with Negative Entropy

Suppose we use the negative entropy function ϕ(x) =
∑d

i=1 xi log xi for MD on
a probability simplex set C := {x ∈ Rd :

∑d
i=1 xi = 1, xi ≥ 0}. The Bregman
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Divergence in this case is the Kullback-Leibler (KL) divergence:

Dϕ
y (x) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y), x− y⟩

=
d∑

i=1

xi log xi −
d∑

i=1

yi log yi −
d∑

i=1

(1 + log yi)(xi − yi)

=
d∑

i=1

xi log
xi

yi

The resulting MD update function on set C = {x ∈ Rd :
∑d

i=1 xi = 1, xi ≥ 0} is given
by:

xk+1 = argmin
x∈C

⟨∇f(xk), x− xk⟩+
1

η

d∑
i=1

xi log
xi

xk,i

.

Based on this, we can formulate the following optimization problem:

min
x∈Rd

⟨∇f(xk), x− xk⟩+
1

η

d∑
i=1

xi log
xi

xk,i

s.t. − xi ≤ 0, ∀i ∈ [d] and
d∑

i=1

xi − 1 = 0.

The first term in the objective function is linear in x and thus convex. The second term
(involving negative entropy) is convex over the simplex, as proved in the first homework
assignment. Therefore, the objective function is convex as it is a non-negative sum
of two convex functions. The feasible set, the probability simplex, is convex as well.
This renders the whole problem a convex problem. Therefore, strong duality holds
and the KKT conditions can be used to determine the solution.

We will take the following steps to solve the optimization problem:

1. Find the Lagrangian:

L(x, λ, µ) = ⟨∇f(xk), x− xk⟩+
1

η

d∑
i=1

xi log
xi

xk,i

−
d∑

i=1

λixi + µ

 d∑
i=1

xi − 1

 .

2. Stationary condition: we require ∂L
∂x
[i] = 0,∀i ∈ [d], which means

[∇f(xk)]i +
1

η

(
log

xi

xk,i

+ 1

)
− λi + µ = 0

⇔ log

(
xi

xk,i

)
= −η([∇f(xk)]i − λi + µ)− 1

⇔ xi = xk,i exp
(
−η(∇[f(xk)]i − λi + µ)− 1

)
.

(1)
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3. Complementary slackness: λixi = 0 and ∀i ∈ [d]. In the case where
λi = 0, xi ̸= 0, Equation 1 becomes

xi = xk,i exp
(
−η([∇f(xk)]i + µ)− 1

)
= xk,i

exp
(
−η[∇f(xk)]i

)
exp (ηµ+ 1)

.

Primal feasibility requires the following:

d∑
i=1

xi = 1 ⇔
d∑

i=1

xk,i

exp
(
−η[∇f(xk)]i

)
exp(ηµ+ 1)

= 1

⇒ exp(ηµ+ 1) =
d∑

j=1

xk,j exp
(
−η[∇f(xk)]j

)
⇒ xi = xk,i

exp
(
−η[∇f(xk)]i

)∑d
j=1 xk,j exp(−η[∇f(xk)]j)

.

Therefore, the update at each coordinate i ∈ [d] using negative entropy is given by:

xk+1,i =
xk,i exp

(
−η[∇f(xk)]i

)∑d
j=1 xk,j exp

(
−η[∇f(xk)]j

) .
This is known as the exponentiated gradient.
Note: When applying the complementary slackness condition, we ruled out the
possibility that xi = 0. This is because if x1,i ̸= 0∀ i ∈ [d], then according to the
update step shown above, x2,i will not be zero unless [∇f(xk)]i = ∞.

3 Mirror Descent on Non-Differentiable Functions

Let f(x) be a convex but not necessarily differentiable function, and let gk ∈ ∂f(xk)

be the subgradient of f(·) at xk. The MD in this case is summarized in algorithm 4.

Algorithm 4 Mirror Descent, non-differentiable f
1: for k = 1, 2, · · · do
2: xk+1 = argminx∈C⟨gk, x− xk⟩+ 1

ηD
ϕ
xk(x)

3: end for
4: Output: x̄ :=

∑K
k=1 xk

K .

Recall the definition of the dual norm:
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Definition 2. (Dual norm) Given a norm ∥ · ∥, the dual norm ∥ · ∥∗ is defined as

∥y∥∗ = sup
x:∥x∥=1

xTy.

For any p ≥ 1, the lp-norm is defined as:

||x||p :=

 d∑
i=1

|xi|p
 1

p

.

Theorem 1. if p, q ∈ [1,∞] and 1
p
+ 1

q
= 1, then ∥ · ∥p and ∥ · ∥q are dual with each

other.

For example, the l1-norm, || · ||1 is dual with the l∞ norm, || · ||∞.

Theorem 2. Consider a generating function ϕ(x) that 1-strongly convex w.r.t ∥ · ∥.
Then, mirror descent has

K∑
k=1

f(xk)− f(x∗) ≤ 1

η
Dϕ

x1
(x∗) +

K∑
k=1

η

2
∥gk∥2∗,

where ∥ · ∥∗ denotes the dual norm.

Remark: The above inequality is similar to the inequality we proved in lecture 7
for the expected optimality gap in Stochastic Gradient Descent (SGD) for convex
functions.

4 Mirror Descent vs. Projected Gradient Descent

Consider the convex constrained optimization problem minx∈C f(x), where C is the
probability simplex defined by C := {x ∈ Rd :

∑d
i=1 xi = 1, xi ≥ 0}. In this problem,

ϕ(x) =
∑d

i=1 xi log xi, which is the negative entropy function and is 1-strongly convex
with respect to ∥ · ∥1.
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4.1 Solving the Problem Using Mirror Descent

Let x1 =
1
d
1d (the uniform discrete distribution). Then, the following inequality holds:

Dϕ
x1
(x∗) =

d∑
i=1

x∗,i log
x∗,i

1/d

=
d∑

i=1

x∗,i log x∗,i︸ ︷︷ ︸
≤ 0

+ log d
d∑

i=1

x∗,i︸ ︷︷ ︸
=1 as x∗∈C

≤ log d.

Suppose that ∥gk∥2∞ ≤ 1. Denoting the number of iterations by K, we have:

K∑
k=1

f(xk)− f(x∗) ≤ 1

η
Dϕ

x1
(x∗) +

K∑
k=1

η

2
∥gk∥2∗

≤ 1

η
log d+

η

2
K.

The tightest bound is achieved with parameter tuning when the following holds:

1

η
log d =

η

2
K ⇔ η =

√
2 log d

K
.

Therefore,

K∑
k=1

f(xk)− f(x∗) ≤

√
K

2 log d
· log d+ 1

2

√
2 log d

K
K =

√
2K log d = O(

√
K log d).

Since the algorithm returns x̄, we apply Jensen’s inequality to obtain:

f(x̄)− f(x∗) ≤
1

K

K∑
k=1

f(xk)− f(x∗)

= O

(√
log d

K

)
.

From the above discussion, we see that after K iterations, MD achieves an ϵ-optimality

gap, where ϵ = O
(√

log d
K

)
.
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4.2 Solving the Same Problem Using PGD

We now apply Projected Gradient Descent (PGD) on the same problem, where the
Bregman divergence Dϕ

x1
(x∗) =

1
2
∥x1 − x∗∥22 ≤ B, where B is a bound on the initial

distance. This setting corresponds to the quadratic form 1
2
∥ · ∥22, which is strongly

convex with respect to the ℓ2-norm, which is a self-dual norm.

Considering the norm inequality ∥z∥∞ ≤ ∥z∥2 ≤
√
d∥z∥∞ for all z ∈ Rd, it follows

that ∥gk∥22 ≤ d∥gk∥2∞ ≤ d.

Using Theorem 2, the cumulative error bound over K iterations is given by:

K∑
k=1

f(xk)− f(x∗) ≤ 1

η
Dϕ

x1
(x∗) +

K∑
k=1

η

2
∥gk∥2∗

=
1

2η
∥x1 − x∗∥22 +

K∑
k=1

η

2
∥gk∥2∗

≤ 1

η
B +

η

2
Kd.

For the optimal choice of η =
√

2B
Kd

that gives the tightest bound, the cumulative

error bound achieves the order O(
√
BKd).

K∑
k=1

(
f(xk)− f(x∗)

)
= O(

√
BKd)

⇔ 1

K

K∑
k=1

(
f(xk)− f(x∗)

)
= O

(√
Bd

K

)
.

Applying Jensen’s inequality to the convex function f , we deduce:

f(xk)− f(x∗) ≤
1

K

K∑
k=1

(
f(xk)− f(x∗)

)
= O

(√
Bd

K

)
.

Hence, the convergence rate of PGD is O
(√

1
K

)
, similarly to MD. However, the con-

stant factor is crucial, as it makes MD particularly more efficient for high-dimensional
problems (d large). To achieve an ϵ-optimality gap, the required number of iterations
for MD is approximated by

√
K ≈

√
log d
ϵ

, while for PGD it scales as
√
K ≈

√
d
ϵ

, noting
that log d ≤ d.
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Table 1 summarizes the expressions for the ϵ-optimality gap and the required number
of iterations to achieve this gap for the MD and PGD algorithms.

Method ϵ Approx. Required Iterations (
√
K)

MD O
(√

log d
K

)
√
log d
ϵ

PGD O
(√

d
K

) √
d
ϵ

Table 1: Summary of ϵ for MD and PGD.

Bibliographic Notes

The Mirror Descent algorithm is covered in more detail in Chapter 7 of [Vishnoi (2021)]
and in Chapter 5 of [Nemirovski (2022)].
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