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1 Review: Key Definitions

We begin be reviewing some key definitions from Lecture 10.

Definition 1. (Lagrangian) Suppose we have an optimization problem with functional
constraints:

inf
x∈Rd

f(x) (1)

s.t. fj(x) ≤ 0, j = 1, . . . ,m. (2)

s.t. affine hi(x) = 0, i = 1, . . . , p. (3)

The Lagrangian for this optimization problem is:

L(x, λ, µ) := f(x) +
m∑
j=1

λjfj(x) +

p∑
i=1

µihi(x), (4)

where λ ≥ 0.

Definition 2. (Dual Function) g(λ, µ) := infx∈Rd L(x, λ, µ)

Definition 3. (Dual Problem) supλ≥0,µ g(λ, µ)

Definition 4. (KKT Conditions) We say the primal variables x∗ ∈ Rd and the
dual variables λ∗ ∈ Rm, µ∗ ∈ Rp satisfy KKT conditions if

• (Primal feasibility) ∀j ∈ [m] : fj(x∗) ≤ 0 and ∀i ∈ [p] : hi(x∗) = 0.

• (Dual feasibility) λ∗ ≥ 0.

• (Stationarity) ∂xL(x∗, λ∗, µ∗) = 0.

• (Complementary slackness) ∀j ∈ [m] : λ∗
jfj(x∗) = 0.
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2 Optimization problem and Dual problem

The goal of the optimization problem is to find the minimum value of a function
f(x) under given constraints. Here x is a d-dimensional real vector representing
the variables of the optimization problem. The function f(x) is called the objective
function, and we aim to find the value of x that minimizes f(x).

inf
x∈Rd

f(x)

s.t. fj(x) ≤ 0, j = 1, . . . ,m

s.t. affine hi(x) = 0, i = 1, . . . , p.

The constraints given can be classified into two groups, the inequality constraints
and equality constraints. There are m inequality constraints, written as fj(x) ≤ 0,
where j = 1, . . . ,m. There are p equality constraints, written as hi(x) = 0, where
i = 1, . . . , p.

The Lagrangian function L(x, λ, µ) is a method to incorporate the constraints of
the original optimization problem into the objective function, by introducing Lagrange
multipliers ( λ and µ ) to account for these constraints. The Lagrangian function is
defined as:

L(x, λ, µ) := f(x) +
m∑
j=1

λjfj(x) +

p∑
i=1

µihi(x)

where λj ≥ 0 are the Lagrange multipliers associated with the j-th inequality con-
straint, and µi are the multipliers associated with the i-th equality constraint.

In order to gain deeper insights into the problem’s structure and potential solution
strategies, we introduce the concept of dual problem to provide an alternative perspec-
tive to the primal optimization problem. The dual function is a crucial component in
forming the dual problem. It is defined using the Lagrangian of the primal problem.
Given a Lagrangian L(x, λ, µ), the dual function g(λ, µ) is expressed as:

g(λ, µ) := inf
x∈Rd

L(x, λ, µ)

This definition means that for fixed values of λ and µ, the dual function is the infimum
(or greatest lower bound) of the Lagrangian over all possible x. In simpler terms,
you evaluate the Lagrangian by minimizing it with respect to x while treating the
Lagrange multipliers λ (associated with inequality constraints) and µ (associated with
equality constraints) as constants.
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Once the dual function is defined, the dual problem can be formulated as:

sup
λ≥0,µ

g(λ, µ)

This problem seeks to maximize the dual function over the space of all feasible Lagrange
multipliers λ and µ. The maximization of the dual function and the minimization of
the primal function satisfies the following:

sup
λ≥0;µ

g(λ, µ) ≤ inf
x∈Ω

f(x).

We call it “weak duality”. This always holds for any primal-dual problems. However,
under certain conditions, we can find a stronger relationship between the primal and
dual problems called “strong duality”.

Strong duality is defined as the case where:

g (λ∗, µ∗) = f (x∗) ,

where x∗ is primal optimal; λ∗ and µ∗ are dual optimal.

And when will this special case appear? That’s determined by the Karush-Kuhn-
Tucker (KKT) conditions, which are necessary for deriving strong duality and will be
discussed in the following section.

3 Strong Duality and the KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions for a solution in
certain optimization problems to be optimal, especially when the problem involves
constraints. We say the primal variables x∗ ∈ Rd and the dual variables λ∗ ∈ Rm,
µ∗ ∈ Rp satisfy KKT conditions if

1. (Primal feasibility) ∀j ∈ [m] : fj (x∗) ≤ 0 and ∀i ∈ [p] : hi (x∗) = 0.

2. (Dual feasibility) λ∗ ≥ 0.

3. (Stationarity) ∂xL (x∗, λ∗, µ∗) = 0.

4. (Complementary slackness) ∀j ∈ [m] : λ∗
i fj (x∗) = 0.

Primal feasibility ensures that the solution x∗ satisfies all the constraints of the
original optimization problem: fj (x∗) ≤ 0 and hi (x∗) = 0 must hold.
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Dual feasibility requires that the dual variables associated with the inequality
constraints be non-negative.

Stationarity ∂xL (x∗, λ∗, µ∗) = 0 involves the subgradient(s) (if not differentiable)
or gradient (if differentiable) of the Lagrangian function with respect to the primal
variables, stating that they must be zero at the optimal points.

Complementary slackness bridges the gap between the primal and dual problems,
linking the dual variables and their corresponding primal constraints. This means
that for each constraint, either the constraint is active (i.e., fj (x∗) = 0 ) and the
corresponding dual variable λ∗

j can be positive, or the constraint is inactive (i.e.,
fj (x∗) < 0 ) and the corresponding dual variable must be zero.

4 Applications of the KKT Conditions: Projection

In the projection problem,

ProjC(y) := argmin
x∈C

∥y − x∥22,

we choose a set C in the space, and for each point y, we try to find the closest point
x ∈ C. Some typical examples are related to norm balls. For projecting onto the
l2-norm ball we have

C :=
{
x ∈ Rd : ∥x∥2 ≤ 1

}
,

The solution to this projection problem is derived in Lecture 10. We have that the
solution is either x = y, when y is already in the ball, or x = y/∥y∥, when y is located
outside. Hence, we have

ProjC(y) =
y

max
{
1, ∥y∥2

}
A more tricky example is the case where we want to project onto the l1-norm ball

C :=
{
x ∈ Rd : ∥x∥1 ≤ 1

}
.

If we denote x = Projc(y), then x = y if ∥y∥1 ≤ 1; otherwise,

x[i] = sign(y[i])(|y[i]| − λ)+,∀i ∈ [d]

where λ is a number such that
∑d

i=1(|y[i]| − λ)+ = 1 and (z)+ := max{0, z}.
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This derivation was mostly completed in Lecture 10. Here we will add the final
parts. By the complementary slackness of KKT conditions, we have the inequality
constraint (only one)

f1(x) = ∥x∥1 − 1 ≤ 0,

so complementary slackness gives

λ
(
∥x∥1 − 1

)
= 0.

Then there are two possible cases. The first case is if the constraint is inactive and
dual variable is zero λ = 0, then we can say the point y is already in the norm ball.
Writing this mathematically

∥x∥1 < 1 ⇒ λ = 0 ⇒ x[i] = y[i].

The second case is if the constraint is active λ ̸= 0. In order to satisfy the complemen-
tary slackness condition, we have that

∥x∥1 =
d∑

i=1

|x[i]| = 1,

so together with the previously derived primal feasibility condition,

d∑
i=1

∣∣sign(y[i])(|y[i]| − λ)+
∣∣ = 1,

which is equivalent to
d∑

i=1

(|y[i]| − λ)+ = 1.

Hence, our solution in this case will be of the form

x[i] = sign(y[i])(|y[i]| − λ)+,∀i ∈ [d],

where λ must satisfy

h(λ) :=
d∑

i=1

(|y[i]| − λ)+ − 1,

Notice that to find a solution in this case, we need to find the roots of h(λ).

The example used in lecture for illustration is, when

y =

[
1

2

]
,
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then the piece-wise linear function h(λ) is

h(λ) = (1− λ)+ − 1 + (2− λ)+ =


−1, if λ ≥ 2

1− λ, if λ ∈ [1, 2]

2− 2λ, if λ ≤ 1

Observe that h(λ) is a piece-wise, continuous and decreasing function. The following
figure is a visualization of this piece-wise linear function h(λ).

1 2

−1

1

2

λ

h(λ)

Notice that in this example, only λ = 1 is a root of h(λ). This means that our
solution x[i] = sign(y[i])(|y[i]| − λ)+,∀i ∈ [d] for ∥y∥1 > 1 will be unique. This is
explained by the fact that ∥y − x∥22 is a strongly convex function and ∥x∥1 ≤ 1 is a
closed convex set, which means that we must have a unique solution.

Remark: The reason why the KKT conditions are useful for solving projection
problems is because of the KKT theorem, which we will prove in the next section.
We can use the KKT theorem for projection problems such as minx∈C ∥y − x∥22, s.t.
∥x∥1 ≤ 1 since both f(x) = ∥y − x∥22 and f1(x) = ∥x∥1 − 1 are convex functions.
Hence, by the KKT theorem, the KKT conditions being satisfied implies strong duality.
Therefore, the x∗ and the λ∗, µ∗ that satisfy the KKT conditions will be primal and
dual optimal, respectively.

5 KKT Theorem Proof

Theorem 1. (Strong Duality and KKT Conditions) Strong duality, i.e.,

f(x∗) = g(λ∗, µ∗)
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implies that x∗, λ∗, µ∗ satisfy KKT conditions. Furthermore, if f(·), f1(·), . . . , fm(·)
are convex and h1(·), h2(·), . . . , hp(·) are affine, then the converse is true: KKT
conditions implies the strong duality.

Proof. To begin, we want to prove that strong duality implies that x∗, λ∗, µ∗ satisfy
the KKT conditions. By the definition of strong duality we have that:

f(x∗) = g(λ∗, µ∗) (5)

= inf
x
L(x, λ∗, µ∗) , by definition of the dual function

(6)

= inf
x

f(x) +
m∑
j=1

λ∗
jfj(x) +

p∑
i=1

µ∗
ihi(x)

 , by definition of the Lagrangian

(7)

≤ f(x∗) +
m∑
j=1

λ∗
jfj(x∗) +

p∑
i=1

µ∗
ihi(x∗) , by definition of the infimum (8)

Now, since x∗, λ∗, µ∗ are assumed to be feasible points, we have that fj(x∗) ≤ 0, λ∗
j ≥

0,∀j ∈ [m] and hi(x∗) = 0,∀i ∈ [p]. Hence, by primal and dual feasibility, we have
the inequality:

f(x∗) +
m∑
j=1

λ∗
jfj(x∗) +

p∑
i=1

µ∗
ihi(x∗) ≤ f(x∗) (9)

The result f(x∗) ≤ f(x∗) indicates that these should all be equalities. Hence:

f(x∗) = g(λ∗, µ∗) (10)

= inf
x
L(x, λ∗, µ∗) (11)

= inf
x

f(x) +
m∑
j=1

λ∗
jfj(x) +

p∑
i=1

µ∗
ihi(x)

 (12)

= f(x∗) +
m∑
j=1

λ∗
jfj(x∗) +

p∑
i=1

µ∗
ihi(x∗) (13)

= f(x∗). (14)

From the equality:

f(x∗) +
m∑
j=1

λ∗
jfj(x∗) +

p∑
i=1

µ∗
ihi(x∗) = f(x∗),
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and since we assume that hi(x∗) = 0, ∀i ∈ [p], we have that:

m∑
j=1

λ∗
jfj (x∗) = 0,

p∑
i=1

µ∗
ihi (x∗) = 0. (15)

Since we know that fj(x∗) ≤ 0, λ∗
j ≥ 0, ∀j ∈ [m], we have that λ∗

jfj(x∗) ≤ 0,∀j ∈ [m].
This along with (15) implies:

λ∗
jfj(x∗) = 0,∀j ∈ [m]. (16)

Hence, complementary slackness is satisfied.
Now, the equality:

inf
x

f(x) +
m∑
j=1

λ∗
jfj(x) +

p∑
i=1

µ∗
ihi(x)

 = f(x∗) +
m∑
j=1

λ∗
jfj(x∗) +

p∑
i=1

µ∗
ihi(x∗).

implies that x∗ is a stationary point of L(x, λ∗, µ∗). Therefore:

∇xL(x∗, λ∗, µ∗) = 0. (17)

Hence, the stationarity condition is satisfied. The primal feasibility and dual feasibility
conditions are satisfied since they were assumed to hold throughout this proof. This
means that the KKT conditions are satisfied.

We now want to show that if x∗, λ∗, µ∗ satisfy the KKT conditions, and if f(·), f1(·), ..., fm(·)
are convex, and if h1(·), ..., hp(·) are affine, then strong duality holds. By the definition
of the dual function we have:

g(λ∗, µ∗) = inf
x
L(x, λ∗, µ∗). (18)

Now, since the conical combination (i.e., linear combination with non-negative coeffi-
cients) of convex functions is convex, we know that the Lagrangian is convex with
respect to x. Furthermore, by the stationarity KKT condition ∂xL(x∗, λ∗, µ∗) = 0.
Hence, we know that x∗ must be a global minima of the Lagrangian, resulting in the
equality:

inf
x
L(x, λ∗, µ∗) = L(x∗, λ∗, µ∗) (19)

By the definition of the Lagrangian in this case:

L(x∗, λ∗, µ∗) = f(x∗) +
m∑
j=1

λ∗
jfj(x∗) +

p∑
i=1

µ∗
ihi(x∗) (20)
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By the primal feasibility (KKT condition) hi(x∗) = 0,∀i ∈ [p]:

f(x∗) +
m∑
j=1

λ∗
jfj(x∗) +

p∑
i=1

µ∗
ihi(x∗) = f(x∗) +

m∑
j=1

λ∗
jfj(x∗) (21)

By the complementary slackness (KKT condition) we have that ∀j ∈ [m], λ∗
jfj(x∗) = 0.

Hence:

f(x∗) +
m∑
j=1

λ∗
jfj(x∗) = f(x∗). (22)

Finally, by the equalities above, we can conclude that:

g(λ∗, µ∗) = f(x∗). (23)

Therefore, strong duality holds.

6 Fenchel Conjugate

Definition 5. (Fenchel Conjugate) Consider a function f(·), then the Fenchel
Conjugate is defined to be

f ∗(y) = sup
x∈dom(f)

(
y⊤x− f(x)

)
.

Theorem 2. The conjugate function f ∗(y) is always convex, even if f(·) is non-
convex.

Proof. Denote qx(y) = yTx − f(x). Notice that qx(y) is an affine function. Now
suppose that we have points y1, y2 ∈ dom(f). For α ∈ [0, 1], we have:

f ∗((1− α)y1 + αy2) = sup
x∈dom(f)

qx((1− α)y1 + αy2) (24)

= sup
x∈dom(f)

(1− α)qx(y1) + αqx(y2), (25)

where the last equality follows by definition of the affine function. Now notice that
qx(y1) and qx(y2) may have different maximizing x values. Hence, the sum of their
individual supremums may be greater than the supremum of their sum, which requires
them to have the same x value. Therefore:

sup
x∈dom(f)

(1− α)qx(y1) + αqx(y2) ≤ (1− α) sup
x∈dom(f)

qx(y1) + α sup
x∈dom(f)

qx(y2). (26)

Hence:

f ∗((1− α)y1 + αy2) ≤ (1− α)f ∗(y1) + αf ∗(y2). (27)
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7 Conjugate Function Application: Dual Formulation
of Empirical Risk Minimization (ERM)

Example: One application of the conjugate function is the dual formulation of
empirical risk minimization (ERM). Suppose that we have a dataset {(zi, yi)}ni=1,
where zi ∈ Rd is a feature, yi ∈ R is a label and n is the number of datapoints. The
primal problem is:

min
x∈Rd

F (x), where F (x) :=
1

n

n∑
i=1

fi(x
⊤zi) +

λ

2
∥x∥22. (28)

We want to show that the corresponding dual problem is:

max
α∈Rn

D(α), where D(α) :=
1

n

n∑
i=1

−f ∗
i (−αi)−

λ

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

. (29)

To begin, consider the following constrained optimization problem:

min
x∈Rd;(θi)ni=1

n∑
i=1

fi(θi) +
λn

2
∥x∥22

subject to ∀i, θi = z⊤i x (30)

Step 1: Construct the Lagrangian. Denote {θi}ni=1 = θ and {αi}ni=1 = α. Hence:

L(x, θ, α) =
n∑

i=1

fi(θi) +
λn

2
∥x∥22 +

n∑
i=1

αi(θi − zTi x). (31)

Step 2: Optimize over primal variables to get the dual function. By definition, the
dual function is g(α) = infx,θ L(x, θ, α). Hence, we have:

min
x,θ1,...,θn

n∑
i=1

(fi(θi) + αiθi) +
λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x (32)

⇔ min
x

min
θ1,...,θn

 n∑
i=1

(
fi(θi) + αiθi

)+
λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x (33)

⇔ min
x

 n∑
i=1

(
min
θi

fi(θi) + αiθi

)+
λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x. (34)
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Now, we want to rewrite this expression so that we can substitute in the conjugate
function. The conjugate function is defined as f ∗(y) = supx∈dom(f)

(
y⊤x− f(x)

)
.

Hence, we want to write the inner minimizations as maximizations. We know that:(
min
θi

fi(θi) + αiθi

)
= −max

θi
−
(
fi(θi) + αiθi

)
. (35)

Plugging this into (34), we have:

min
x

n∑
i=1

(−max
θi

−
(
fi(θi) + αiθi

)
) +

λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x. (36)

By the definition of the conjugate function, we have f ∗
i (−αi) = maxθi(−αiθi − fi(θi)).

Hence, we have equivalently:

−
n∑

i=1

f ∗
i (−αi) + min

x
(
λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x). (37)

Now define Φ(x) = λn
2
∥x∥22 −

∑n
i=1 αiz

⊤
i x. Notice that minx Φ(x) is an unconstrained

optimization problem for a convex function with respect to x. Hence, we can find a
closed-form solution to this optimization problem by finding its stationary point:

∇Φ(x) = 0 (38)

⇔ λnx−
n∑

i=1

αizi = 0 (39)

⇔ x =
1

λn

n∑
i=1

αizi. (40)

Hence, our closed-form solution is:

min
x

Φ(x) =
λn

2
∥ 1

λn

n∑
i=1

αizi∥22 − ⟨
n∑

i=1

αizi,
1

λn

n∑
i=1

αizi⟩ (41)

=
−1

2λn
∥

n∑
i=1

αizi∥22. (42)

Finally, we can plug this back into our original optimization problem over the primal
variables to get the dual function:

g(α) = −
n∑

i=1

f ∗
i (−αi)−

λn

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

. (43)
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Now, since g(α) was found for the original function
∑n

i=1 fi(x
⊤zi) +

λn
2
∥x∥22, but in

the problem statement we have that F (x) := 1
n

∑n
i=1 fi(x

⊤zi) +
λ
2
∥x∥22, we need to

multiply this result by 1
n

to get the desired dual function:

D(α) =
1

n
g(α) =

1

n

n∑
i=1

−f ∗
i (−αi)−

λ

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

. (44)

8 Duality Gap

Definition 6. (Duality Gap) Suppose that we have the primal problem minx F (x)

and the dual problem maxα D(α). We define:

Duality gap := F (x(α))−D(α).

Theorem 3. The primal optimality gap F (x(α))− F∗ is upper-bounded by the duality
gap := F (x(α))−D(α).

Proof. By weak duality, we know that:

D(α) ≤ min
x

F (x) = F∗.

Hence:
F (x(α))−D(α) ≥ F (x(α))− F∗.

Remark: Notice that F (x(α)) − D(α) is easily computable. Hence, if we design
algorithms in the dual space (e.g., updating α instead of x directly), we can compute
the upper-bound for the current primal optimality gap at each iteration. We can
then use this upper-bound to stop the algorithm when we have achieved an at most ϵ
primal optimality gap. An example of an algorithm in the dual space is Stochastic
Dual Coordinate Ascent (SDCA), which is introduced in the next section.

9 Stochastic Dual Coordinate Ascent (SDCA)

To begin, the basic coordinate descent algorithm is given by:

Algorithm 1 Coordinate Descent
1: for k = 1, 2, . . . do
2: Randomly pick a coordinate ik ∈ [d].
3: xk+1[ik] = xk[ik]− η∇f(xk)[ik]. only the ik element is updated at a time.

4: end for

12



Remark: In general, the iteration cost of coordinate descent will be less than that of
gradient descent. However, the iteration complexity to achieve an ϵ gap for coordinate
descent is greater than or equal to that of gradient descent [Wright (2015)].

Question: Is the iteration cost of coordinate descent always 1
d

times that of gradient
descent?
Answer: Not necessarily. For f(x) = 1

2
xTAx− bTx, the iteration cost of coordinate

descent is 1
d

times that of gradient descent. However, this is not the case for all
functions f(·).

We can now turn our attention to the Stochastic Dual Coordinate Ascent (SDCA)
algorithm when applied to the empirical risk minimization (ERM) problem discussed
previously. The main idea behind this algorithm is that instead of solving the primal
minimization problem, we solve the dual maximization problem:

max
α∈Rn

D(α), where D(α) :=
1

n

n∑
i=1

−f ∗
i (−αi)−

λ

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

, (45)

Consider updating a dual variable αi ∈ Rn at a time. That is, at the k-th iteration,
we pick ik ∈ [n]. Then, we have

max
αik

− 1

n
f ∗
ik

(
−αik

)
− λ

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

⇔ max
αik

− 1

n
f ∗
ik

(
−αik

)
− λ

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

α
(k−1)
i zi +

1

λn
∆αikzik

∥∥∥∥∥∥
2

2

⇔ max
∆αik

− 1

n
f ∗
ik

(
−
(
α
(k−1)
ik

+∆αik

))
− λ

2

∥∥∥∥x(k−1) +
1

λn
∆αikzik

∥∥∥∥2
2

,

where αik = α
(k−1)
ik︸ ︷︷ ︸
fixed

+ ∆αik︸ ︷︷ ︸
variable

and x(k−1) = 1
λn

∑n
i=1 α

(k−1)
i zi.

The algorithm proposed in [Shalev-Shwartz & Zhang (2013)] to solve this opti-
mization problem is:
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Algorithm 2 SDCA for ERM
1: Initialize dual variables α(1) ∈ Rn.
2: for k = 1, 2, . . . , K do
3: Randomly pick a dual coordinate ik ∈ [n].
4: Maximizes the dual problem by updating the dual variable ik while fixing the

others

max
∆αik

− 1

n
f ∗
ik

(
−
(
α
(k−1)
ik

+∆αik

))
− λ

2

∥∥∥∥x(k−1) +
1

λn
∆αikzik

∥∥∥∥2
2

. (46)

5: α(k) = α(k−1) +∆αikeik ∈ Rn.
6: x(k) = x(k−1) + 1

λn
∆αikzik ∈ Rd.

7: end for
8: Output: x(α(K)) := 1

λn

∑n
i=1 α

(K)
i zi .

Some results from applying the SDCA algorithm to different optimization problems
are shown in Figure 1 [Johnson & Zhang (2013)].

Figure 1: Performance comparison of the SGD-best, SDCA, and SVRG algorithms on
various optimization problems.

Example: We want to determine the update ∆αik of the SDCA for ERM algorithm
when using hinge loss. Hence, let us consider fi(θ) := max{0, 1− yiθ} being the hinge

14



loss, where yi ∈ {+1,−1}. Its conjugate function is

f ∗
i (a) =

ayi , if ayi ∈ [−1, 0]

∞ , otherwise
.

It can be shown that the update of SDCA for the hinge loss is

∆αik = yik max

0,max

(
1,

1− z⊤ikx
(k−1)yik

∥zik∥22/λn
+ α

(k−1)
ik

yik

)− α
(k−1)
ik

. (47)

Bibliographic Notes

More information about duality theory can be found in Chapter 5 of [Boyd & Vandenberghe (2004)]
and Chapter 5 of [Vishnoi (2021)].
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