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Lecture 10: Duality Theory Part I: Lagrangian, Dual function,
Duality and Part II: KKT (Kahn-Karush-Tucker) Conditions

1 Lagrangians and dualities

We attempt to find the minimizer of a function subject to constraints

inf
x∈Rd

f(x)

s.t. fj(x) ≤ 0, j = 1, . . . ,m

affine hi(x) = 0, i = 1, . . . , p

Definition 1. (Lagrangian):

L(x, λ, µ) := f(x) +
m∑
j=1

λjfj(x) +

p∑
i=1

µihi(x)

where λ ≥ 0.

Property 1 of the Lagrangian:
Let Ω := {x ∈ Rd : fj(x) ≤ 0,∀j ∈ [m];hi(x) = 0,∀i ∈ [p]}. Consider x ∈ Ω. Then,
the Lagrangian lower-bounds the function f(x).

L(x, λ, µ) ≤ f(x)

Property 2 of the Lagrangian:
Let Ω := {x ∈ Rd : fj(x) ≤ 0,∀j ∈ [m];hi(x) = 0,∀i ∈ [p]}, and

sup
λ≥0;µ

L(x, λ, µ) =

f(x), if x ∈ Ω

∞, otherwise

Then,
inf
x∈Rd

sup
λ≥0;µ

L(x, λ, µ) = inf
x∈Ω

sup
λ≥0;µ

L(x, λ, µ) = inf
x∈Ω

f(x)

Definition 2. (Dual function):

g(λ, µ) := inf
x∈Rd

L(x, λ, µ)

1



Definition 3. (Dual problem):

sup
λ≥0,µ

g(λ, µ)

Theorem 1. (Weak duality): Weak duality is defined by

sup
λ≥0;µ

g(λ, µ) ≤ inf
x∈Ω

f(x)

Proof. Note that by Property 2:

inf
x∈Rd

sup
λ≥0;µ

L(x, λ, µ) = inf
x∈Ω

f(x)

Then for any fixed λ ≥ 0, µ:

g(λ, µ) = inf
x∈Rd

L(x, λ, µ) ≤ inf
x∈Ω

f(x)

Therefore:
sup
λ≥0;µ

g(λ, µ) = sup
λ≥0;µ

inf
x∈Rd

L(x, λ, µ) ≤ inf
x∈Ω

f(x)

Remark: In general, for any function Q(·, ·), the following is true:

sup
y∈Y

inf
x∈X

Q(x, y) ≤ inf
x∈X

sup
y∈Y

Q(x, y)

Lemma 1. Dual function is concave:

g(λ, µ) = inf
x∈Rd

L(x, λ, µ)

= inf
x∈Rd

f(x) +
m∑
j=1

λjfj(x) +

p∑
i=1

µihi(x)

Remark: The dual function is the infimum of affine functions, i.e. g(λ, µ) can be
written as g(θ) := infx∈Rd qx(θ) where qx(θ) = f(x) +

∑m
j=1 λjfj(x) +

∑p
i=1 µihi(x).

Proof. (Lemma 1.) We prove this by showing that g((1−α)θ1+αθ2) ≥ (1−α)g(θ1)+

αg(θ2). We know that

g((1− α)θ1 + αθ2)

= inf
x∈Rd

qx((1− α)θ1 + αθ2)

= inf
x∈Rd

((1− α)qx(θ1) + αqx(θ2))

≥ (1− α) inf
x∈Rd

qx(θ1) + α inf
x∈Rd

qx(θ2)

= (1− α)g(θ1) + αg(θ2)

where the third equality is true due to qx being affine.
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Definition 4. (Strong duality): Strong duality is defined as

sup
λ≥0;µ

g(λ, µ) = inf
x∈Ω

f(x)

Definition 5. (Slater condition): There exists a point x̄ ∈ Ω such that all the
inequality constraints defining Ω are strict at x̄, i.e., fj(x̄) < 0,∀j ∈ [m], and
hi(x̄) = 0,∀i ∈ [p].

Theorem 2. (Slater condition and strong duality): If f, f1, . . . , fm are convex
functions and hi(·) are affine, the Slater condition guarantees the strong duality.

Proof. Proof of this theorem can be found in Chapter 5.4 of [Vishnoi (2021)].

2 KKT (Kahn-Karush-Tucker) Conditions

Define the optimization problem

inf
x∈Rd

f(x)

s.t. fj(x) ≤ 0, j = 1, . . . ,m.

hi(x) = 0, i = 1, . . . , p.

Definition 6. (KKT conditions): We say the primal variables x∗ ∈ Rd and the
dual variables λ∗ ∈ Rm, µ∗ ∈ Rp satisfy KKT conditions if all of the following are
satisfied:

• (Primal feasibility) ∀j ∈ [m] : fj(x∗) ≤ 0 and ∀i ∈ [p] : hi(x∗) = 0.

• (Dual feasibility) λ∗ ≥ 0.

• (Stationarity) ∂xL(x∗, λ∗, µ∗) = 0.

• (Complementary slackness) ∀j ∈ [m] : λ∗
jfj(x∗) = 0.

Remark: Complementary slackness has the implication that one of the terms in
λ∗
jfj(x∗) = 0, ∀j ∈ [m] must be zero if the other is nonzero. In other words,

fj(x∗) ̸= 0 ⇒ fj(x∗) < 0 ⇒ λ∗
j = 0, and λ∗

j ̸= 0 ⇒ fj(x∗) = 0.

Theorem 3. (Strong Duality and KKT conditions): Let x∗ ∈ Rd be the primal
feasible points and let λ∗ ∈ Rm and µ∗ ∈ Rp be the dual feasible points. Strong
duality, i.e.,

f(x∗) = g(λ∗, µ∗)

implies that x∗, λ∗, µ∗ satisfy KKT conditions. Furthermore, if f(·), f1(·), . . . , fm(·)
are convex and h1(·), h2(·), . . . , hp(·) are affine, then the converse is true: KKT
conditions imply strong duality.
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Remark: Recall the dual value is always not greater than the primal value

sup
λ≥0;µ

g(λ, µ) ≤ inf
x∈C

f(x)

Thus, when we have zero duality gap (f(x∗) = g(λ∗, µ∗)), which implies that x∗ is
the primal optimal, and λ∗, µ∗ are dual optimals. Thus, if f(·), f1(·), . . . , fm(·) are
convex, h1(·), h2(·), . . . , hp(·) are affine, and x∗, λ∗, µ∗ satisfy KKT, it follows that
strong duality is satisfied, and x∗ is the primal optimal, and λ∗, µ∗ are dual optimals.

3 Example applications of the KKT conditions

In the following examples we work with the following projection function

ProjC(y) := argmin
x∈C

∥y − x∥2

3.1 Example 1

Projection to ℓ2 norm ball: C := {x ∈ Rd : ∥x∥2 ≤ 1}:

ProjC(y) :=
y

max{1, ∥y∥2}
Step 1: Getting the Lagrangian L(x, λ) by introducing the Lagrangian Multiplier
λ ∈ Rd

≥0. Given the constrained problem

min
x∈C

∥x− y∥22

s.t. ∥x∥22 ≤ 1,

the Lagrangian can be constructed as:

L(x, λ) = ∥x− y∥22 + λ(∥x∥22 − 1).

What is the “primal feasibility” of the KKT conditions in this case?

x : ∥x∥22 ≤ 1

What is the “dual feasibility” of the KKT conditions in this case?

λ : λ ≥ 0

Recall the KKT conditions:

• (Stationarity) ∂xL(x∗, λ∗, µ∗) = 0.
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• (Complementary slackness) ∀j ∈ [m] : λ∗
jfj(x∗) = 0.

What is the “stationarity” of the KKT conditions in this case?

∇xL(x, λ) = 2(x− y) + 2λx = 0

⇔ y = (1 + λ)x (1)

What is the “complementary slackness” of the KKT conditions in this case?

λ∗
jfj(x∗) = 0

⇔ λ(∥x∥22 − 1) = 0 (2)

Now, let us derive the projection formulation based on the KKT conditions.

ProjC(y) := argmin
x∈C

∥y − x∥2

ProjC(y) :=
y

max{1, ∥y∥2}
We differentiate the following cases:

• Case 1:

∥x∥22 < 1

Then, by complementary slackness (equation (2)):

λ = 0

and by stationarity (equation (1)):

y = x

As a result, we have:
∥y∥22 < 1

• Case 2:
∥x∥22 = 1 (3)

Then, by complementary slackness (equation (2)):

λ ̸= 0

and by stationarity (equation (1)):

y = (1 + λ)x (4)
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Using equations (3) and (4):
∥y∥22

(1 + λ)2
= 1

⇔ ∥y∥2 = 1 + λ (5)

As a result of equations (4) and (5), we have:

x =
y

∥y∥2

3.2 Example 2

Projection to ℓ1 norm ball: C := {x ∈ Rd : ∥x∥1 ≤ 1}:
Denote x = ProjC(y). Then{

x = y , if ∥y∥1 ≤ 1;

x[i] = sign(y[i])(|y[i]| − λ)+,∀i ∈ [d] , otherwise

where λ is a number such that
∑d

i=1(|y[i]| − λ)+ = 1, where (z)+ := max{0, z}.

Step 1: Getting the Lagrangian L(x, λ) by introducing the Lagrangian Multiplier
λ ∈ Rd

≥0,

L(x, λ) =
1

2
∥x− y∥22 + λ(∥x∥1 − 1).

What is the “stationarity” of the KKT conditions in this case?

∂xL(x, λ) = 0

Recall that:
∥x∥1 =

∑
i=1

|x[i]|

and

Subgradient of ∥x∥1 =


gx[1] ∈ ∂(|x[1]|)
gx[2] ∈ ∂(|x[2]|)

...
gx[d] ∈ ∂(|x[d]|)

 ∈ Rd

By the stationarity condition:

∂xL(x, λ) = x− y + λ∂(∥x∥1) = 0

For each i ∈ [d], we have: x[i] − y[i] + λgx[i] = 0, or equivalently, for each i ∈ [d]:
y[i] = x[i] + λgx[i], where gx[i] ∈ ∂(|x[i]|).
We differentiate the following cases:
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• Case 1: x[i] = 0

g0 ∈ {−1, 1}

y[i] = x[i] + λ{−1, 1} = {−λ, λ}

• Case 2: x[i] > 0

gx = 1

y[i] = x[i] + λ > λ ≥ 0

• Case 3: x[i] < 0

gx = −1

y[i] = x[i]− λ < −λ ≤ 0

Thus, for each i ∈ [d] : y[i] = x[i] + λgx[i], where gx[i] ∈ ∂(|x[i]|), we have

x[i] = sign(y[i])(|y[i]| − λ)+,∀i ∈ [d]

We will verify the above expression for Case 2, that is for y[i] > λ, we have ∀i ∈ [d]

x[i] = sign(y[i])(|y[i]| − λ)+

= sign(y[i])(y[i]− λ)

= y[i]− λ

The other two cases can be verified similarly.
Now, by the primal feasibility:

∥x∥1 ≤ 1

By complementary slackness:
λ(∥x∥1 − 1) = 0

Then,

• ∥x∥1 < 1 ⇒ λ = 0 ⇒ x[i] = y[i].

• ∥x∥1 = 1 ⇒
∑d

i=1 |sign(y[i])(|y[i]| − λ)+| = 1 (together with primal feasibility)
⇔

∑d
i=1(|y[i]| − λ)+ = 1.

Bibliographic notes

More information can be found in [Drusvyatskiy (2020)] and [Vishnoi (2021)].
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