ECE 273 Convex Optimization and Applications Instructor: Jun-Kun Wang
Scribe: Adi Krishnamoorthy, Jerry Yan, Atefeh Mollabagher May 2, 2024
Editor/TA: Marialena Sfyraki

Lecture 10: Duality Theory Part I: Lagrangian, Dual function,
Duality and Part II: KKT (Kahn-Karush-Tucker) Conditions

1 Lagrangians and dualities

We attempt to find the minimizer of a function subject to constraints

inf
nf, 1@
st. fi(x) <0,5=1,...,m

affine h;(z) =0,i=1,...,p

Definition 1. (Lagrangian):
m p
L(z, A\, pu) == f(z) + Z A fi(z) + Z wihi(z)
j=1 i=1

where A > 0.

Property 1 of the Lagrangian:
Let Q:={x € R?: f;(z) <0,Vj € [m]; hy(x) = 0,Vi € [p]}. Consider x € Q. Then,
the Lagrangian lower-bounds the function f(x).

L(z, A, p) < f(x)

Property 2 of the Lagrangian:
Let Q:={x e R?: f;(z) <0,Vj € [m]; hi(x) = 0,Vi € [p]}, and

ifz e
sup L(z, A, p) = fla), ife

A>0;p 0, otherwise

Then,
inf sup L(x,\,pu) = inf sup L(z, A\, pu) = inf f(x)

z€RT \>0;1 TEQ \>0:p z€Q

Definition 2. (Dual function):

g\, ) == inf L(z, A, )

z€Rd
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Definition 3. (Dual problem):

sup g(A, 1)
A>0,u

Theorem 1. (Weak duality): Weak duality is defined by

sup g(A, p) < inf f()
A>0;p

Proof. Note that by Property 2:
inf sup L(x, A\, u) = inf f(z)

z€RI X\>0;1 zeN
Then for any fixed A > 0, u:

g\ p) = mf Lz, \, p) < inf f(x)

xe)
Therefore:

sup g(\, p) = sup inf L(xz, A\, pu) < inf f(z)
A>0;u A>0;5u z€R4 e

Remark: In general, for any function Q(-,-), the following is true:

sup 1nf Qz,y) < 1nf sup Q(z,y)
yey z€

Lemma 1. Dual function is concave:

g\ p) = inf L(z, A p)

zERY
= inf f(e +Z)\f] Z hi(x)
i=1
Remark: The dual function is the mﬁmum of affine functions, i.e. g(\, p) can be
written as g(0) := inf,cpe ¢.(0) where ¢,(0) = f(x) + 3271, A fi(w) + >0, pahi(x).
Proof. (Lemma 1.) We prove this by showing that g((1 —a)0; +aby) > (1 —a)g(0;) +
ag(f). We know that
9((1 — )by + aby)
= xiéllgd 7:((1 — )b + aby)
— inf (1 - @) (61) + 0,(6)
reR
>(1—a) mienﬂgd ¢:(01) + o xienkfd q.(62)
= (1 = a)g(0h) + ag(b2)
where the third equality is true due to ¢, being affine. O
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Definition 4. (Strong duality): Strong duality is defined as

sup g(A, p) = inf f(z)
A>05u zeQ

Definition 5. (Slater condition): There exists a point T € S such that all the
inequality constraints defining Q0 are strict at z, i.e., f;(z) < 0,Yj € [m], and
hi(z) = 0,Vi € [p].

Theorem 2. (Slater condition and strong duality): If f, fi,..., fm are convex
functions and h;(-) are affine, the Slater condition guarantees the strong duality.

Proof. Proof of this theorem can be found in Chapter 5.4 of [Vishnoi (2021)]. O

2 KKT (Kahn-Karush-Tucker) Conditions

Define the optimization problem

inf f(z)

z€R4
st fi(x) <0, j=1,....,m.
hz(x):O, Zzl,,p
Definition 6. (KK T conditions): We say the primal variables z, € R? and the

dual variables A, € R™, u, € RP satisfy KKT conditions if all of the following are
satisfied:

o (Primal feasibility) Vj € (m] : f;(z,) <0 and Vi€ [p]: hi(z.) =0.
e (Dual feasibility) \. > 0.

o (Stationarity) Oy L(x, A, i) = 0.

e (Complementary slackness) Vj € [m] : Aj f;(z.) = 0.

Remark: Complementary slackness has the implication that one of the terms in
Nifi(x.) = 0, Vj € [m] must be zero if the other is nonzero. In other words,
fi(xs) #0= fj(z.) <0= X} =0, and \; # 0 = fj(v.) = 0.

Theorem 3. (Strong Duality and KKT conditions): Let x, € R? be the primal
feasible points and let A\, € R™ and p, € RP be the dual feasible points. Strong
duality, i.e.,

f(@) = g(A, )
implies that ., Ay, ptx satisfy KKT conditions. Furthermore, if f(-), f1(-),- ., fm(*)
are convex and hy(-), ha(-), ..., hy(-) are affine, then the converse is true: KKT
conditions imply strong duality.



Remark: Recall the dual value is always not greater than the primal value

sup g(A, p) < inf f()
A>0;u zeC

Thus, when we have zero duality gap (f(x.) = g(A, ps)), which implies that x, is
the primal optimal, and A, u. are dual optimals. Thus, if f(-), fi(*),..., fim(:) are
convex, hy(-), ha(:), ..., hy(-) are affine, and x,, A\, p, satisfy KKT, it follows that
strong duality is satisfied, and z, is the primal optimal, and A, . are dual optimals.

3 Example applications of the KKT conditions
In the following examples we work with the following projection function

Proje(y) »= argmin ||y — x|

3.1 Example 1

Projection to ¢, norm ball: C := {z € R?: ||z|, < 1}:

Y
max{1, [|y/[2}
Step 1: Getting the Lagrangian L(x, \) by introducing the Lagrangian Multiplier
A € R%,. Given the constrained problem

Proja(y) :=

: _ 2
min [l — y;

st [lz3 < 1,
the Lagrangian can be constructed as:
L(z, ) = la = yll5 + (=[5 — 1).
What is the “primal feasibility” of the KK'T conditions in this case?
z:zfl; <1
What is the “dual feasibility” of the KKT conditions in this case?
AA>0
Recall the KKT conditions:

e (Stationarity) 0, L(x., s, itx) = 0.



e (Complementary slackness) Vj € [m] : Aj f;(z.) = 0.
What is the “stationarity” of the KK'T conditions in this case?
V.L(x,\) =2(x —y)+ 2 \x =0
Sy=(1+Nz (1)
What is the “complementary slackness” of the KKT conditions in this case?
N fi(z.) =0
& AMflzllz -1) =0 (2)
Now, let us derive the projection formulation based on the KKT conditions.
Proje(y) = argmin [ly — x|,

Y

Projo(y) = — 7%
rOJC(y) max{l, HyHQ}

We differentiate the following cases:
e Case 1:
lfl2 < 1

Then, by complementary slackness (equation (2))):

A=0
and by stationarity (equation (I])):
y=1x
As a result, we have:
lyll3 < 1
e Case 2:
l]f3 =1 (3)

Then, by complementary slackness (equation (2)):
A#£0
and by stationarity (equation (I])):
y= 1+ (4)
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Using equations and :

lyl3
(1+ X)?
Syl =1+ A (5)
As a result of equations and , we have:
oy
T =
1yll2

3.2 Example 2

Projection to ¢; norm ball: C := {z € R?: ||z]|; < 1}:
Denote x = Proj-(y). Then

z=y byl < 1
x[i] = sign(y[i])(|y[7]| — N\)4,Vi € [d] , otherwise

where )\ is a number such that Zj:1(|y[z]| — A); =1, where (2); := max{0, z}.

Step 1: Getting the Lagrangian L(x, \) by introducing the Lagrangian Multiplier
A e RY,,

1
L(w, A) = 5llz = ylls + Alllh = 1).
What is the “stationarity” of the KK'T conditions in this case?
0. L(x,\) =0
Recall that:

Hﬂhz}jmw

and

S
Subgradient of ||z||; = _ € R?
gz[d] € O(|x[d]|)
By the stationarity condition:
O L(x,\) =2 —y+XO(||z]1) =0

For each i € [d], we have: z[i] — y[i] + Ag.[i] = 0, or equivalently, for each ¢ € [d]:
yli] = z[i] + Mgz [i], where g,[i] € O(|x[i]]).
We differentiate the following cases:



e Case 1: z[i]] =0
go € {—1, 1}
yli] = x[i] + M{—1,1} = {=A\, A}

e Case 2: z[i] >0
g =1
ylil = z[i] + A > A >0

e Case 3: z[i]] <0
gz = —1
yli] = z[i] = A < =2 <0

Thus, for each ¢ € [d] : y[i] = z[i] + Mg [i], where g,[i] € O(|z[i]|), we have
xi] = sign(y[i])([y[i]] — M)+, Vi € [d]

We will verify the above expression for Case 2, that is for y[i] > A\, we have Vi € [d]

w[i] = sign(y[i]) (|y[d]] — A+
= sign(y[i]) (y[i] — A)
= yli| = A

The other two cases can be verified similarly.
Now, by the primal feasibility:

el <1

By complementary slackness:
Azl =1) =0

Then,
o 2|1 <1=A=0= z[i| =y[i].
o |zl =1 =% Jsign(y[i])(Jy[i]| = A)4| =1 (together with primal feasibility)
& S (lylill = 2+ = 1.
Bibliographic notes

More information can be found in [Drusvyatskiy (2020)] and [Vishnoi (2021)].
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