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Lecture 1: Mathematical Background and Gradient Flow

1 Review: Calculus
We begin by reviewing some results in Calculus that will be used in this course.

Definition 1. (Derivative) For a function g(·) : R→ R and x ∈ R, consider

L = lim
δ→0

g(x+ δ)− g(x)

δ
.

The function g(·) is said to be “differentiable” if this limit exits for all x ∈ R. In that
case, L is called the “derivative” of g(·). We denote the derivative as g′(x), ġ(x), or
dg(x)
dx

.

Definition 2. (Gradient) For a differentiable function f : Rd → R and x ∈ Rd, the
gradient is

∇f(x) =


∂f
∂x1
∂f
∂x2...
∂f
∂xd

 ,

where
∂f

∂x1

= lim
δ→0

f(x1 + δ; x2; . . . ; xd)− f(x1; x2; . . . ; xd)

δ
.

Remark: The gradient of f is a function from Rd to Rd, and can be pictured as a
vector field (or vector-valued function), which gives the direction and the rate of the
fastest increase.

Definition 3. (Hessian) For a twice continuously differentiable function f : Rd → R
and x ∈ Rd, the Hessian matrix of f(·) at x is defined by

∇2f(x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xd

... ... . . . ...
∂2f

∂xd∂x1

∂2f
∂xd∂x2

· · · ∂2f
∂x2

d

 ∈ Rd×d
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Remark: The Hessian is a symmetric matrix.

Example: Let f : Rd → R be defined by f(x) = x2
1x2. Then

∇f(x) =

[
2x1x2

x2
1

]
∈ R2,

and

∇2f(x) =

[
2x2 2x1

2x1 0

]
∈ R2×2.

Theorem 1. (Fundamental Theorem of Calculus): Let f : [a, b] → R be a
continuously differentiable function. Then,

f(b)− f(a) =

∫ b

a

f ′(θ) dθ.

Theorem 2. Let f : Rd → R be a differentiable function. Define

xα = (1− α)x+ αy,

for some α ∈ [0, 1] and x,y ∈ Rd. Then,

f(y)− f(x) =

∫ 1

0

⟨∇f(xα), y − x⟩dα

Additionally, if f is twice differentiable, then

∇f(y)−∇f(x) =
∫ 1

0

∇2f(xα)(y − x)dα,

where ∇2f(xα) ∈ Rd×d and (y − x) ∈ Rd.

Theorem 3. (Chain Rule): Let f : R → R and g : R → R be differentiable
functions, and let x ∈ R. Then, the composite function h : R → R given by h(x) =

f
(
g (x)

)
is differentiable on R and its derivative is given by

h′(x) = f ′ (g (x)) · g′(x)
Remark: This rule can be extended to functions of several variables. In general, if
y = g(z) and z = h(x), the chain rule is expressed as:

dy

dx
=

dy

dz
· dz
dx

This formula shows how the rate of change of a composite function is influenced by
the rates of change of its components.
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2 Norm
Consider a fixed vector x ∈ Rd. We define

l2-Norm:

||x||2 =

√√√√ d∑
i=1

x2
i

l1-Norm:

||x||1 =
d∑

i=1

|xi|

l∞-Norm:

||x||∞ = max
i
{|xi|}

Definition 4. (Cauchy-Schwartz Inequality): For every x,y ∈ Rd we have

⟨x,y⟩ ≤ ||x||2||y||2,

where ⟨·, ·⟩ is the inner-product.

3 Rates of Convergence
A solid and sound comparison of numerical methods relies on precise rates of progress
in the iterates. For example, we might measure the progress an algorithm via the
optimality gap.

Definition 5. (Optimality Gap): Given a function f such that f : Rd → R, the
optimality gap is the difference between the value of f at xt ∈ Rd for some t ∈ R and
the optimal value, i.e.

f(xt)−min
x

f(x).

Fix a sequence of real numbers ak > 0 with ak → 0

• Sublinear rate: We say ak converges sublinearly if there exist constants c >

0, q > 0 satisfying
ak ≤

c

kq
for all k. (1)
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Larger q and smaller c indicates a faster convergence reate.

From (1), we decude that the number of iterations k such that ak ≤ ϵ is

k ≥
(
c

ϵ

)1/q

. (2)

Note that the importance of the value of c should not be discounted; the con-
vergence rate depends strongly on this value.

• Linear rate:

We say ak converges linearly if there exist constants c > 0, q ∈ (0, 1] satisfying

ak ≤ c(1− q)k for all k. (3)

In this case, we call 1− q the linear rate of convergence.

From (3), we decude that the number of iterations k such that ak ≤ ϵ for a
target accuracy ϵ is

c(1− q)k ≤ ϵ ⇐⇒ k ≥ −1
log(1− q)

log

(
c

ϵ

)
. (4)

Taking into account the inequality log(1 − q) ≤ −q, for q ∈ [0, 1], we deduce
that ak ≤ ϵ for every

k ≥ 1

q
log

(
c

ϵ

)
. (5)

The dependency on q is strong, while the dependency on c is very weak (as c is
inside the log).

4 Gradient Descent and Gradient Flow
A formal specification of the Gradient Descent (GD) algorithm follows.

Algorithm 1 Gradient Descent
1: Input: an initial point x0 ∈ dom f and step size η.
2: for k = 1 to K do
3: xk+1 ← xk − η∇f (xk)

4: end for
5: Return xk+1.

Remark: The parameter η is called the step size or learning rate.
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In order to better understand gradient descent, let’s consider the curve that at
each instant proceeds in the direction of steepest descent of f . For this method, let’s
consider a function f : X → R, the method of gradient flow starts at some initial
point x0 ∈ X and seek to find the optimum of f by following the integral curve
defined by the following differential equations.

Definition 6. (Gradient Flow): Let f : Rd → R be a smooth function. Gradient
flow is a smooth curve x : R→ Rd such that

dx(t)

dt
= −∇f

(
x(t)

)
4.1 Insights into the Algorithm
Gradient Flow is Gradient Descent as η → 0. More specifically, consider

lim
η→0

xk+1 − xk

η
= lim

η→0
−∇f(xk)

⇔ dx

dt
= −∇f(x)

Consider applying Gradient Flow to minx∈Rd f(x), that is
dx(t)

dt
= −∇f

(
x(t)

)
.

Then,

df

dt
=

d∑
i

∂f

∂xi

∂xi

∂t

=

〈
∇f(x), dx(t)

dt

〉
= ⟨∇f(x),−∇f(x)⟩
= −||∇f(x)||22
≤ 0

Thus, as long as ∇f(x) ̸= 0, the function is always decreasing. This does not neces-
sarily imply that it finds the optimal point.

4.2 Gradient Dominant Condition
Definition 7. (Gradient Dominant or Polyak-Lojasiewicz (PL) Condition):
We say a function f : Rd → R satisfies the “Gradient Dominance” condition if

||∇f(x)||22 ≥ 2µ

(
f(x)−min

x
f(x)

)
, for some µ > 0.
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We say that f is µ-gradient dominant.

Definition 8. (Stationary Point): Given a differentiable function f such that
f : Rd → R and x ∈ Rd, a stationary point is a point such that

∇f(x) = 0 ∈ Rd.

Remark: For any function satisfying the P.L. condition, every stationary point is a
global optimum point.

Example 1: All strongly convex functions

Example 2: f(x) = x2 + 2 sin2(x)

Consequence: Suppose that f is additionally µ-gradient dominant. Then, taking
the derivative of an optimality gap we get

d(f(xt)− f∗)

dt
=

df(xt)

dt
, as f∗ is a constant

= −||∇f(xt)||22 , by Gradient Flow

≤ −2µ
(
f(xt)−min

x
f(x)

)
, since f is µ-gradient dominant

(6)

Inequality (1) implies that

f(xt)−min
x

f(x) ≤ e−2µt

(
f(x0)−min

x
f(x)

)
(7)

for µ-gradient dominant functions, where x0 is the initial point.
Why does (1) imply (2)? Let

θt := f(xt)− f∗.

Then, inequality (1) can be expressed as

dθt
dt
≤ −2µθt

⇔ dθt
θt
≤ −2µdt

⇒
∫ θt

θ0

dθt
θt
≤

∫ t

0

−2µdt

⇔ log(θt)− log(θ0) ≤ −2µt , since d

dx
log x =

1

x
.
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Therefore,

θt
θ0
≤ exp(−2µt)

⇔ θt ≤ θ0exp(−2µt)

Plugging back in, we get

f(xt)−min
x

f(x) ≤ exp (−2µt)
(
f(x0)−min

x
f(x)

)

Bibliographic notes
More prelimiaries of calculus and linear algebra can be found in Chapter 1 of [Drusvyatskiy (2020)]
and Chapter 2 of [Vishnoi (2021)].
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