DSC 211 Introduction to Optimization Winter 2024 Instructor: Jun-Kun Wang Scribe: Zhishang Luo February 6, 2024 Editors/TAs: Merlin Chang, Marialena Sfyraki

Lecture 9: Lagrangian, Dual Problem, and Duality

1 Lagrangian

Definition 1. (Lower/Upper bound) An element u is an upper bound of a set S if $u \ge s$, for all $s \in S$. Similarly, an element l is a lower bound of a set S if $l \le s$, for all $s \in S$.

Definition 2. (*Infimum*) Let S be a non-empty set of real numbers. The infimum of S, denoted as $m = \inf S$, where $m \in \mathbb{R}$, is defined as the greatest lower bound of S, such that:

- 1. $m \leq x$ for all $x \in S$.
- 2. If b is any lower bound of S, then $b \leq m$.

The infimum of a function is denoted as

$$\inf_{x \in C} f(x),$$

where $f(\cdot): C \to \mathbb{R}$ and $C \subseteq \mathbb{R}^d$.

Remark: Using the above definition, the optimality gap is defined as

$$\delta_k \coloneqq f(x_k) - \inf_x f(x).$$

Remark: The motivation to use the concept $\inf_{x \in C} f(x)$ instead of $\min_{x \in C} f(x)$ is that some functions f(x) do not have a minimum. Minimum of a function $\min_{x \in C} f(x)$ needs to be attained at a point in the set C, while the infimum of a function $\inf_{x \in C} f(x)$ does not necessarily need to be attained at a point in the set C.

Example: Some common loss functions f(x) where the minimum does not exist but the infimum exists:

1. Exponential loss function: $f(x) = \exp(-x)$

The minimum of the function $\min_{x \in C} f(x)$ does not exist. The infimum of the function is $\inf_{x \in C} f(x) = 0$. 2. Logistic loss function f(x) = log(1 + exp(-x))

The minimum of the function $\min_{x \in C} f(x)$ does not exist. The infimum of the function is $\inf_{x \in C} f(x) = 0$.

Remark: Note that in practice, we don't know the exact value of $\inf_{x \in C} f(x)$, therefore we need to have an estimate of a lower bound of the $\inf_{x \in C} f(x)$, denoted as y_* , where $y_* \leq \inf_{x \in C} f(x)$.

Question: Why do we want to estimate the lower bound of $\inf_{x \in C} f(x)$?

Answer: Optimality Gap $\delta_k \coloneqq f(x_k) - \inf_x f(x) \leq f(x_k) - y_*$, where y_* is a lower bound of $\inf_{x \in C} f(x)$ and $f(x_k) - y_*$ is an upper bound of the optimality gap δ_k . We want to estimate an upper bound of the optimality gap δ_k , which is equivalent to estimating a lower bound of the infimum $\inf_{x \in C} f(x)$.

We now consider the following general constrained optimization with functional constraints:

$$\inf_{x \in \mathbb{R}^d} f(x)$$

s.t. $f_j(x) \le 0, \quad j = 1, \dots, m.$
s.t. affine $h_i(x) = 0, \quad i = 1, \dots, p$

Note that the problem can be rewritten as $\min_{x \in C} f(x)$, where the set C is defined by the functional constrains:

$$C := \{ x \in \mathbb{R}^d : f_j(x) \le 0, \forall j \in [m]; h_i(x) = 0, \forall i \in [p] \}$$

Definition 3. (Affine Function) Let $h : \mathbb{R}^n \to \mathbb{R}^n$ be a function. We say that h is an affine function, if for all $\mathbf{x} \in \mathbb{R}^n$, the function can be written as:

$$h_i(\mathbf{x}) = \mathbf{a}_i^{\mathbf{T}} \mathbf{x} + b$$

where $\mathbf{a_i} \in \mathbb{R}^n$ and $b \in \mathbb{R}$, $i = 1, \ldots, n$.

Remark: We can reformulate the problem of finding the minimizer of a function subject to constraints using the **Lagrangian**, $L(x, \lambda, \mu)$.

Definition 4. (Lagrangian) The Lagrangian is defined as:

$$L(x,\lambda,\mu) := f(x) + \sum_{j=1}^{m} \lambda_j f_j(x) + \sum_{i=1}^{p} \mu_i h_i(x)$$

where $\lambda_j \ge 0$, $f_j(x) \le 0$, j = 1, ..., m and **affine** $h_i(x) = 0$, i = 1, ..., p.

Property 1 of the Lagrangian: The Lagrangian lower-bounds the function $f(\cdot)$, that is if $x \in C$, then

$$L(x,\lambda,\mu) \le f(x)$$

Proof: if $x \in C$ $(h_i(x) = 0, i = 1, ..., p.)$

$$L(x,\lambda,\mu) = f(x) + \sum_{j=1}^{m} \lambda_j f(x) + 0$$

We have

$$\lambda_j \ge 0, f_j(x) \le 0, \quad j = 1, \dots, m$$

Therefore,

$$\lambda_j f(x) \le 0 \quad j = 1, \dots, m$$

Therefore,

$$L(x,\lambda,\mu) \le f(x)$$

Remark: When is $L(x, \lambda, \mu) = f(x)$ when $x \in C$?

- Case 1: $\lambda = 0$, then $L(x, 0, \mu) = f(x)$
- Case 2: $\lambda \neq 0$, then $L(x, \lambda, \mu) \leq f(x)$

Property 2 of the Lagrangian: Let set C contain all the $x \in \mathbb{R}^d$ under the constraints

$$C := \{ x \in \mathbb{R}^d : f_j(x) \le 0, \forall j \in [m]; h_i(x) = 0, \forall i \in [p] \}$$

We have

$$\sup_{\lambda_j \ge 0; \mu} L(x, \lambda, \mu) = \begin{cases} f(x) & , \text{ if } x \in C \\ \infty & , \text{ otherwise} \end{cases}.$$

This property implies that **Implication 1.**

$$\inf_{x \in \mathbb{R}^d} \sup_{\lambda_j \ge 0, \mu} L(x, \lambda, \mu) = \inf_{x \in C} \sup_{\lambda_j \ge 0, \mu} L(x, \lambda, \mu) = \inf_{x \in C} f(x)$$

Implication 2. For any dual variables λ, μ

$$\inf_{x \in \mathbb{R}^d} L(x, \lambda, \mu) \le \inf_{x \in C} f(x).$$

2 Dual Problem

Dual function is obtained by minimizing $L(x, \lambda, \mu)$ over the primal variables x.

Definition 5. (*Dual Function*) Let $L(x, \lambda, \mu)$ be the Lagrangian function of f(x), then dual function $g(\lambda, \mu)$ is defined as

$$g(\lambda,\mu)\coloneqq \inf_{x\in \mathbb{R}^d} L(x,\lambda,\mu)$$

Definition 6. (*Dual Problem*) From the *Dual Function* $g(\lambda, \mu)$ we defined above, the dual problem is defined as

$$\sup_{\lambda \ge 0; \mu} g(\lambda, \mu)$$

Theorem 1. Weak duality of dual function

$$\sup_{\lambda \ge 0; \mu} g(\lambda, \mu) \le \inf_{x \in C} f(x)$$

Remark: This theorem tells us that the dual value is not greater than the primal value.

Proof. To prove theorem 1, from Implication 2, we have

$$\inf_{x \in \mathbb{R}^d} L(x, \lambda, \mu) \le \inf_{x \in C} f(x),$$

which holds for any λ and μ ; hence, we have

$$\sup_{\lambda \ge 0;\mu} g(\lambda,\mu) = \inf_{x \in \mathbb{R}^d} L(x,\lambda,\mu) \le \inf_{x \in C} f(x).$$

Definition 7. (Strong Duality) Strong duality means that

$$\sup_{\lambda \ge 0;\mu} g(\lambda,\mu) = \inf_{x \in C} f(x).$$

Remark: On the left-hand side is maximizing the **dual problem** and on the righthand side is minimizing the **primal problem**.

3 Example of a Dual Problem

Example: Obtaining the dual problem of the following primal:

$$\min_{x \in \mathbb{R}^d} \langle c, x \rangle$$
s.t. $Ax \ge b$

Step 1: Get the Lagrangian

Set
$$b - Ax \le 0$$

 $L(x, \lambda) = \langle c, x \rangle + \langle \lambda, b - Ax \rangle = c^T x + \lambda^T b - \lambda^T Ax$

Step 2: Get the dual function

$$g(\lambda) = \inf_{x} L(x,\lambda) = \inf_{x} \left[\langle c - A^{T}\lambda, x \rangle + b^{T}\lambda \right] = \begin{cases} 0 + b^{T}\lambda & \text{, when } c - \lambda^{T}A = 0, \text{ then } c = A^{T}\lambda \\ -\infty & \text{, otherwise} \end{cases}$$

Step 3: Dual Problem: maximizing $g(\lambda)$

$$\sup_{\lambda} b^T \lambda \ s.t. \ \lambda \ge 0, c = A^T \lambda$$

Remark: Dual function is a concave function (no matter the original function is convex or not). In other words, dual function is infimum of the affine functions with respect to dual variables, i.e., $g(\lambda, \mu)$ can be written as $g(\theta) := \inf_x L(x, \lambda, \mu) =$ $\inf_x [f(x) + \sum_{j=1}^m \lambda_j f_j(x) + \sum_{i=1}^p \mu_i h_i(x)] = \inf_x g_x(\theta)$, where θ is (λ, μ) . Note that the fact that the dual function is concave in no way suggest that solving a non-convex problem is easy (as its dual problem is about maximizing a concave function). The catch/caveat is that getting the dual function is actually an optimization problem, which might be computationally challenging.

Proof: Show $g((1-\alpha)\theta_1 + \alpha\theta_2) \ge (1-\alpha)g(\theta_1) + \alpha g(\theta_2)$, where $g(\theta)$ is dual function, $\alpha \in [0, 1]$.

$$g((1 - \alpha)\theta_1 + \alpha\theta_2) = \inf_x g_x((1 - \alpha)\theta_1 + \alpha\theta_2)$$

=
$$\inf_x [(1 - \alpha)g_x(\theta_1) + \alpha g_x(\theta_2)], \text{ since } g_x \text{ is affine}$$

$$\geq (1 - \alpha)\inf_x g_x(\theta_1) + \alpha \inf_x g_x(\theta_2)$$

=
$$(1 - \alpha)g_x(\theta_1) + \alpha g_x(\theta_2)$$

Definition 8. (Slater condition) Given Strong duality means that

$$\sup_{\lambda \ge 0; \mu} g(\lambda, \mu) = \inf_{x \in C} f(x).$$

The condition of strong duality is that

There exists a point $\bar{x} \in C$ such that all the inequality constraints defining C are strict at \bar{x} , i.e., $f_j(\bar{x}) < 0, \forall j \in [m]$, and $h_i(\bar{x}) = 0, \forall i \in [p]$.

Theorem 2. If f, f_1, \ldots, f_m are convex functions and $h_i(\cdot)$ are affine, the Slater condition guarantees the strong duality.

Bibliographic notes

For the proof of strong duality under Slater's condition, see Chapter 5.4 of Algorithms for Convex Optimization. Nisheeth K. Vishnoi. [1].

References

 Nisheeth K. Vishnoi. Algorithms for Convex Optimization Cambridge University Press, 2021