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Lecture 9: Lagrangian, Dual Problem, and Duality

1 Lagrangian
Definition 1. (Lower/Upper bound) An element u is an upper bound of a set S
if u ≥ s, for all s ∈ S. Similarly, an element l is a lower bound of a set S if l ≤ s,
for all s ∈ S.

Definition 2. (Infimum) Let S be a non-empty set of real numbers. The infimum
of S, denoted as m = inf S, where m ∈ R, is defined as the greatest lower bound
of S, such that:

1. m ≤ x for all x ∈ S.

2. If b is any lower bound of S, then b ≤ m.

The infimum of a function is denoted as

inf
x∈C

f(x),

where f(·) : C → R and C ⊆ Rd.

Remark: Using the above definition, the optimality gap is defined as

δk := f(xk)− inf
x
f(x).

Remark: The motivation to use the concept infx∈C f(x) instead of minx∈C f(x) is
that some functions f(x) do not have a minimum. Minimum of a function minx∈C f(x)

needs to be attained at a point in the set C, while the infimum of a function infx∈C f(x)

does not necessarily need to be attained at a point in the set C.

Example: Some common loss functions f(x) where the minimum does not exist but
the infimum exists:

1. Exponential loss function: f(x) = exp(−x)

The minimum of the function minx∈C f(x) does not exist.
The infimum of the function is infx∈C f(x) = 0.
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2. Logistic loss function f(x) = log(1 + exp(−x))

The minimum of the function minx∈C f(x) does not exist.
The infimum of the function is infx∈C f(x) = 0.

Remark: Note that in practice, we don’t know the exact value of infx∈C f(x), there-
fore we need to have an estimate of a lower bound of the infx∈C f(x), denoted as y∗,
where y∗ ≤ infx∈C f(x).

Question: Why do we want to estimate the lower bound of infx∈C f(x)?

Answer: Optimality Gap δk := f(xk) − infx f(x) ≤ f(xk) − y∗, where y∗ is a lower
bound of infx∈C f(x) and f(xk)− y∗ is am upper bound of the optimality gap δk. We
want to estimate an upper bound of the optimality gap δk, which is equivalent to
estimating a lower bound of the infimum infx∈C f(x).

We now consider the following general constrained optimization with functional con-
straints:

inf
x∈Rd

f(x)

s.t. fj(x) ≤ 0, j = 1, . . . ,m.

s.t. affine hi(x) = 0, i = 1, . . . , p.

Note that the problem can be rewritten as minx∈C f(x), where the set C is defined
by the functional constrains:

C := {x ∈ Rd : fj(x) ≤ 0, ∀j ∈ [m];hi(x) = 0, ∀i ∈ [p]}

Definition 3. (Affine Function) Let h : Rn → Rn be a function. We say that h is
an affine function, if for all x ∈ Rn, the function can be written as:

hi(x) = aT
i x+ b

where ai ∈ Rn and b ∈ R, i = 1, . . . , n.

Remark: We can reformulate the problem of finding the minimizer of a function
subject to constraints using the Lagrangian, L(x, λ, µ).

Definition 4. (Lagrangian) The Lagrangian is defined as:

L(x, λ, µ) := f(x) +
m∑
j=1

λjfj(x) +

p∑
i=1

µihi(x).

where λj ≥ 0, fj(x) ≤ 0, j = 1, . . . ,m and affine hi(x) = 0, i = 1, . . . , p.
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Property 1 of the Lagrangian: The Lagrangian lower-bounds the function f(·),
that is if x ∈ C, then

L(x, λ, µ) ≤ f(x)

Proof: if x ∈ C (hi(x) = 0, i = 1, . . . , p.)

L(x, λ, µ) = f(x) +
m∑
j=1

λjf(x) + 0

We have

λj ≥ 0, fj(x) ≤ 0, j = 1, . . . ,m

Therefore,

λjf(x) ≤ 0 j = 1, . . . ,m

Therefore,

L(x, λ, µ) ≤ f(x)

Remark: When is L(x, λ, µ) = f(x) when x ∈ C?

• Case 1: λ = 0, then L(x, 0, µ) = f(x)

• Case 2: λ ̸= 0, then L(x, λ, µ) ≤ f(x)

Property 2 of the Lagrangian: Let set C contain all the x ∈ Rd under the
constraints

C := {x ∈ Rd : fj(x) ≤ 0, ∀j ∈ [m];hi(x) = 0, ∀i ∈ [p]}

We have

sup
λj≥0;µ

L(x, λ, µ) =

f(x) , if x ∈ C

∞ , otherwise
.

This property implies that
Implication 1.

inf
x∈Rd

sup
λj≥0,µ

L(x, λ, µ) = inf
x∈C

sup
λj≥0,µ

L(x, λ, µ) = inf
x∈C

f(x)

Implication 2. For any dual variables λ, µ

inf
x∈Rd

L(x, λ, µ) ≤ inf
x∈C

f(x).
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2 Dual Problem
Dual function is obtained by minimizing L(x, λ, µ) over the primal variables x.

Definition 5. (Dual Function) Let L(x, λ, µ) be the Lagrangian function of f(x),
then dual function g(λ, µ) is defined as

g(λ, µ) := inf
x∈Rd

L(x, λ, µ)

Definition 6. (Dual Problem) From the Dual Function g(λ, µ) we defined above,
the dual problem is defined as

sup
λ≥0;µ

g(λ, µ)

Theorem 1. Weak duality of dual function

sup
λ≥0;µ

g(λ, µ) ≤ inf
x∈C

f(x)

Remark: This theorem tells us that the dual value is not greater than the primal
value.

Proof. To prove theorem 1, from Implication 2, we have

inf
x∈Rd

L(x, λ, µ) ≤ inf
x∈C

f(x),

which holds for any λ and µ; hence, we have

sup
λ≥0;µ

g(λ, µ) = inf
x∈Rd

L(x, λ, µ) ≤ inf
x∈C

f(x).

Definition 7. (Strong Duality) Strong duality means that

sup
λ≥0;µ

g(λ, µ) = inf
x∈C

f(x).

Remark: On the left-hand side is maximizing the dual problem and on the right-
hand side is minimizing the primal problem.
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3 Example of a Dual Problem
Example: Obtaining the dual problem of the following primal:

min
x∈Rd

⟨c, x⟩

s.t. Ax ≥ b

Step 1: Get the Lagrangian

Set b− Ax ≤ 0

L(x, λ) = ⟨c, x⟩+ ⟨λ, b− Ax⟩ = cTx+ λT b− λTAx

Step 2: Get the dual function

g(λ) = inf
x
L(x, λ) = inf

x

[
⟨c− ATλ, x⟩+ bTλ

]
=

0 + bTλ , when c− λTA = 0, then c = ATλ

−∞ , otherwise

Step 3: Dual Problem: maximizing g(λ)

sup
λ

bTλ s.t. λ ≥ 0, c = ATλ

Remark: Dual function is a concave function (no matter the original function is
convex or not). In other words, dual function is infimum of the affine functions with
respect to dual variables, i.e„ g(λ, µ) can be written as g(θ) := infx L(x, λ, µ) =

infx[f(x) +
∑m

j=1 λjfj(x) +
∑p

i=1 µihi(x)] = infx gx(θ), where θ is (λ, µ). Note that
the fact that the dual function is concave in no way suggest that solving a non-convex
problem is easy (as its dual problem is about maximizing a concave function). The
catch/caveat is that getting the dual function is actually an optimization problem,
which might be computationally challenging.

Proof: Show g((1−α)θ1+αθ2) ≥ (1−α)g(θ1)+αg(θ2), where g(θ) is dual function,
α ∈ [0, 1].

g((1− α)θ1 + αθ2) = inf
x
gx((1− α)θ1 + αθ2)

= inf
x
[(1− α)gx(θ1) + αgx(θ2)], since gx is affine

≥ (1− α) inf
x
gx(θ1) + α inf

x
gx(θ2)

= (1− α)gx(θ1) + αgx(θ2)
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Definition 8. (Slater condition) Given Strong duality means that

sup
λ≥0;µ

g(λ, µ) = inf
x∈C

f(x).

The condition of strong duality is that
There exists a point x̄ ∈ C such that all the inequality constraints defining C are strict
at x̄, i.e., fj(x̄) < 0, ∀j ∈ [m], and hi(x̄) = 0, ∀i ∈ [p].

Theorem 2. If f, f1, . . . , fm are convex functions and hi(·) are affine, the Slater
condition guarantees the strong duality.

Bibliographic notes
For the proof of strong duality under Slater’s condition, see Chapter 5.4 of Algorithms
for Convex Optimization. Nisheeth K. Vishnoi. [1].
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