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Lecture 8: SGD and Variance Reduction

1 SGD and Variance
Recall a stochastic optimization algorithm in general can be expressed as follows:

Algorithm 1 (General) Stochastic Gradient Descent
1: for k = 1, 2, . . . do
2: Compute a stochastic gradient gk that satisfies E[gk] = ∇F (xk)

3: xk+1 = xk − ηgk.
4: end for

SGD has a slower convergence rate compared to GD, see figure 1 for the illustra-
tion. Since at each iteration, we have some randomness of computing the stochastic
gradient, which can cause fluctuation during updates. Specifcially, even when the up-
date is close to an optimal point and the full gradient is close to zero, the stochastic
gradient may not be close to zero, which slows down the progress.

On the other hand, recall that we derived the iteration complexity of SGD in last
lecture:

Theorem 1. Let F (x) = Ez[f(x; z)] : Rd → R be a convex function. Consider the
update

xk+1 = xk − ηgk,

where Ez[gk] = ∇F (xk). Suppose x∗ = argminx F (x) exists and the initial distance is
bounded, i.e., ∥x1 − x∗∥ ≤ D. Then,

1

K

K∑
k=1

(
F (xk)− F (x∗)

)
≤ η

2K

 K∑
k=1

E[∥gk∥22]

+
∥x1 − x∗∥22

2ηK
,

where x̄K := 1
K

∑K
k=1 xk.

Does the upper bound reflect the fact that the variance of stochastic gradients
slows down the progress? Notice that the term in red is actually the variance in
disguise (to be elaborated soon). Since gk does not reduce as we approach the optimal
point, we were only able to bound E[∥gk∥22] ≤ G with a constant. This causes SGD
to have O

(
1√
K

)
rate under optimal tuning of η.
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(a) SGD (b) GD

Figure 1: Illustration of the progress

Lemma 1. E
[
∥gk∥22

]
is an upper bound of the variance of the stochastic gradient.

Proof. The variance of gk can be simplified in the following way:

Var(gk) = E
[
∥gk − E(gk)∥22

]
= E

[
∥gk∥22 − 2gk

⊤E(gk) + ∥E(gk)∥22
]

= E
[
∥gk∥22

]
− 2∥E(gk)∥22 + ∥E(gk)∥22 by linearity of expectation.

= E
[
∥gk∥22

]
− ∥E(gk)∥22

≤ E
[
∥gk∥22

]

2 Stochastic Variance Reduced Gradient (SVRG)
To continue, we are going to consider the finite-sum problem;

min
x∈Rd

F (x), where F (x) :=
1

n

n∑
i=1

fi(x) (1)

The algorithm for SVRG is the following:
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Algorithm 2 Stochastic Variance Reduced Gradient Method (SVRG)
1: Set s = 1. Init v1 = x1. Learning rate η.
2: for stage s = 1, 2, . . . , S do
3: for iteration k = 1, 2, . . . , K do
4: Randomly pick a sample ik ∈ [n].
5: Set gk = ∇fik(xk)−∇fik(vs) +∇F (vs). (variance reduction)
6: Update xk+1 = xk − ηgk.
7: end for
8: Update the snapshot vs+1 =

1
K

∑K
k=1 xk.

9: Set x1 = vs+1

10: end for

Some things to help decipher the algorithm:

• There are 2 iterative loops, inner one is the same K iteration loop, the outer
one is looping over S.

• The full gradient ∇F (vs) is used to compute the stochastic gradient gk, however,
since it is only computed with respect to vs, a snapshot at each outer loop
iteration, we do not need to compute the full gradient K times, and we can just
compute ∇F (vs) at the beginning of each stage.

• We update the snapshot of vs+1 at the end of each stage s, which is the average
of all xk computed in the K iterations of the inner loop.

Recall. A stochastic gradient gk for a function F at xk in its expectation is the full
gradient, Ez[gk] = ∇F (xk).
We can see that if we set gk = ∇fik(xk) − ∇fik(vs) + ∇F (vs), then gk is still a
stochastic gradient. This is evident where

E
[
∇fik(xk)−∇fik(vs) +∇F (vs)

]
= E

[
∇fik(xk)

]
− E

[
∇fik(vs)

]
+ E

[
∇F (vs)

]
= E

[
∇fik(xk)

]
−∇F (vs) +∇F (vs)

= E
[
∇fik(xk)

]
= ∇F (xk)

Theorem 2. Suppose each fi(·) is L-smooth and µ-strongly convex. Setting SVRG
with η = 1

8L
and K = 64L

µ
. Then, at each stage s,

F (vs+1)− F (x∗) ≤
3

4

(
F (vs)− F (x∗)

)
where x∗ ∈ argminx F (x).
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The proof of this theorem will be in Section 2.2.
In order to get an ϵ-gap, the size of S (number of stages) should be in the order of
O(log 1

ϵ
). Since we can repeatedly apply Theorem 1:

F (vs+1)− F (x∗) ≤
(
3

4

)S (
F (v1)− F (x∗)

)
≤ ϵ

S =
4

3
log

(
F (v1)− F (x∗)

)
ϵ

≈ O(log
1

ϵ
)

2.1 Computation Cost of SVRG
If we set η = 1

8L
and K = 64L

µ
, we can see that within SVRG,

• Total number of stochastic gradient computations:

2×K × S = 2× 64
L

µ
× S = O

(
L

µ
log

1

ϵ

)
.

• Total number of full gradient computations:

1× S = O

(
log

1

ϵ

)
.

• Total number of stochastic gradient computations:

O

(
L

µ
log

1

ϵ

)
+ n×O

(
log

1

ϵ

)
= O

((
L

µ
+ n

)
log

1

ϵ

)
.

2.1.1 SVRG vs. GD

Recall that for gradient descent, in order to get an ϵ-gap for a function that is L-
smooth and µ-strongly convex, the number of iterations we need is

K = O

(
L

µ
log

1

ϵ

)
If we compare the runtime between SVRG and GD, we see that

runtime of SVRG
runtime of GD

=
(L
µ
+ n) log 1

ϵ

L
µ
log 1

ϵ
× n

We want the above fraction to be much less than 1, thus the condition in which SVRG
is faster than GD is when(

L

µ
+ n

)
≪ n

L

µ
⇔ n ≪ (n− 1)

L

µ
,

in other words, when the condition number of F is greater than 1, SVRG will be
faster than GD. This is almost always true in practice.

4



2.1.2 SVRG vs. SGD

Recall that for SGD, in order to get an ϵ-gap for function that is L-smooth and
µ-strongly convex, the asymptotic lower bound of the number of iterations we need
is

K = Ω

(
1

ϵ

)
If we compare the runtime between SVRG and SGD, we see that

runtime of SVRG
runtime of SGD

=

(
L
µ
+ n
)
log 1

ϵ

1
ϵ
× 1

Similarly, the condition for SVRG to be faster than SGD is when(
L

µ
+ n

)
log

1

ϵ
≪ 1

ϵ
⇔
(
L

µ
+ n

)
≪

1
ϵ

log 1
ϵ

.

One way to interpret the above condition is that the condition number(L
µ
) and the

number of samples(n) is bounded by the inverse of ϵ, which implies that we want to
use SVRG when the target ϵ is smaller comparatively to κF + n, where κF = L

µ
.

2.2 Proof of Theorem 2
We will proceed by introducing a few lemmas required for the proof, ultimately see
why setting gk the way in the SVRG algorithm, it will reduce as we move close to
optimal.

Lemma 2. (Variance Expression ) For any random variable Y ∈ Rd

Var(Y ) = E
[
∥Y − E[Y ]∥22

]
= E[∥Y ∥22]−

(
E[∥Y ∥]

)2 ≤ E[∥Y ∥22].

Lemma 3. (Expected Optimality Gap) If each fi (·) is L-smooth convex, then

E
[
∥∇fik(x)−∇fik(x∗)∥2

]
≤ 2L

(
F (x)− F (x∗)

)
Proof. The proof is left as an exercise in HW3.

Lemma 4. (Variance bound )

E
[
∥gk∥22

]
≤ 4L

(
F (xk)− F (x∗)

)
+ 4L

(
F (vs)− F (x∗)

)
.
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Proof. Recall that gk := ∇fik(xk)−∇fik(vs) +∇F (vs), thus

E
[
∥∇fik(xk)−∇fik(vs) +∇F (vs)∥22

]
= E

[
∥∇fik(xk) +

[
∇fik(x∗)−∇fik(x∗)

]
−∇fik(vs) +∇F (vs)∥22

]
, terms cancels

= E
[
∥∇fik(xk)−∇fik(x∗) +∇fik(x∗)−∇fik(vs) +∇F (vs)∥22

]
≤ 2E

[
∥∇fik(xk)−∇fik(x∗)∥22

]
+ 2E

[
∥∇fik(x∗)−∇fik(vs) +∇F (vs)∥22

]
triangle inequality

We will look at the term in red first.

2E
[
∥∇fik(x∗)−∇fik(vs) +∇F (vs)∥22

]
= 2E

[
∥∇fik(x∗)−∇fik(vs)−

(
∇F (x∗)−∇F (vs)

)
∥22
]
, since ∇F (x∗) = 0

If we denote

Y := ∇fik(x∗)−∇fik(vs), E[Y ] := ∇F (x∗)−∇F (vs)

then, using lemma 1, we can see that

2E
[
∥∇fik(x∗)−∇fik(vs)−

(
∇F (x∗)−∇F (vs)

)
∥22
]

= 2E
[
Y − E[Y ]∥22

]
≤ E[∥Y ∥22]
= 2E

[
∥∇fik(x∗)−∇fik(vs)∥22

]
.

Using lemma 3, both terms can be bounded quite easily.

E[∥gk∥2] := E
[
∥∇fik(xk)−∇fik(vs) +∇F (vs)∥22

]
≤ 2E

[
∥∇fik(xk)−∇fik(x∗)∥22

]
+ 2E

[
∥∇fik(x∗)−∇fik(vs)∥22

]
≤ 4L

(
F (xk)− F (x∗)

)
+ 4L

(
F (vs)− F (x∗)

)
.

Now that we have a bound on the gk in terms of the optimality gap, we can plug
it back into the iteration complexity formula for the generic SGD algorithm. Recall
the iteration complexity for SGD is

1

K

K∑
k=1

(
F (xk)− F (x∗)

)
≤ η

2K

 K∑
k=1

E
[
∥gk∥22

]+
∥x1 − x∗∥22

2ηK
. (2)
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Since F is strongly convex, we know that

F (x1) ≥ F (x∗) + ⟨∇F (x∗), x1 − x∗⟩+
µ

2
∥x1 − x∗∥22,

and this implies
2

µ
(F (x1)− F (x∗)) ≥ ∥x1 − x∗∥22.

We can then plug the bound on the square distance between x1 and x∗ back into
equation (2), which yields

1

K

K∑
k=1

(
F (xk)− F (x∗)

)
≤ η

2K

 K∑
k=1

E
[
∥gk∥22

]+
F (x1)− F (x∗)

ηµK
.

By lemma 4, we can plug the variance bound into the first term of the RHS and get

η

2K

K∑
k=1

E[∥gk∥2] =
η

2K

K∑
k=1

(
4L
(
F (xk)− F (x∗)

)
+ 4L

(
F (x1)− F (x∗)

))
.

Then, combining simplified terms and with some algebra we can arrive at

1

K

K∑
k=1

(
F (xk)− F (x∗)

)
≤

2ηL+ 1
ηµK

1− 2ηL

(
F (x1)− F (x∗)

)
(3)

By construction, we have set η = 1
8L

and K = 64L
µ
, then plugging them in results in

F (x̄K)− F (x∗) ≤
1

K

K∑
k=1

(
F (xk)− F (x∗)

)
≤ 3

4

(
F (x1)− F (x∗)

)
,

thus completes the proof for Theorem 2, where the first inequality is be Jensen’s
inequality.

Remark. Since x̄k is used to initialize x1 and the snapshot vs+1 in the next stage,
the above means that the optimality gap δs := F (vs) − F (x∗) is shrinking within a
constant factor in each stage.

Bibliographic notes
SVRG was proposed by Johnson and Zhang [1].
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