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Lecture 7: Introduction to stochastic optimization

1 Stochastic Optimization
Assume that a problem has an underlying structure. Our goal is still

min
x

F (x)

where F (x) := Ez[f(x; z)]

Algorithm 1 Stochastic Gradient Descent
1: for k = 1, 2, . . . do
2: Compute a stochastic gradient gk that satisfies Ez[gk] = ∇F (xk)

3: xk+1 = xk − ηgk.
4: end for

For finite-sum problem, the algorithm becomes

Algorithm 2 Finite-sum problem
1: for k = 1, 2, . . . , K do
2: sample ik ∈ [n]

3: gk ← ∇fik
4: xk+1 = xk − ηgk.
5: end for

For example, F (x) ≜ 1
n

∑n
i=1 fi(x), we have

Eik [fik(x)] = F (x)

ik ∈ [n] when Pr(ik = i) =
1

n

1.1 Comparison between iteration complexity
Recall the comparison between Stochastic Gradient Descent and Gradient Descent

SGD GD
smooth convex O( 1√

K
) O( 1

K
)

strongly convex and smooth O( 1
K
) O(exp (−K))
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Thus, in order to reach an ϵ-gap, we need to set K for smooth convex function to:

(SGD) ϵ = O

(
1√
K

)
⇒ K = O

(
1

ϵ2

)
(GD) ϵ = O

(
1

K

)
⇒ K = O

(
1

ϵ

)
We can compute the ratio between the running time of SGD and GD,

running time of SGD
running time of GD

=
# iterations of SGD
# iterations of GD

× cost per step SGD
cost per step GD

=
1/ϵ2

1/ϵ
× 1

N

=
1

ϵN
≪ 1,

where N is the number of dimensions or number of data points. Thus, the condition
when SGD is faster than GD is

1

ϵ
≪ N.

Remark 1. When the sample size N is much larger than the inverse of the targeted
ϵ, SGD is faster than GD. In machine learning and data science, N is usually large
and we do not need ϵ to be very small to fit the data.

1.2 Iteration complexity of SGD
Theorem 1. Let F (x) = Ez[f(x; z)] : Rd → R be a convex function. Consider the
update

xk+1 = xk − ηgk,

where Ez[gk] = ∇F (xk). Suppose x∗ = argminx F (x) exists and the initial distance is
bounded, i.e., ∥x1 − x∗∥ ≤ D. Then, the following inequality holds:

1

K

 K∑
k=1

F (xk)− F (x∗)

 ≤ η

2K

 K∑
k=1

E
[
∥gk∥2

]+
∥x1 − x∗∥2

2ηK
.

Also, let x̄K = 1
K

∑K
k=1 xk. Then, for the average of the optimality gap, the following

inequality regarding the function value at x̄K compared to the optimal value F (x∗)

holds:

F (x̄K)− F (x∗) ≤ 1

K

 K∑
k=1

f(xk)− F (x∗)

 . (1)
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Remark 2. The result (1) is by an application of Jensen’s inequality, which we
will show in HW2. Jensen’s inequality states that if f is a convex function, then
for any x1, x2, . . . , xn ∈ Rd and any non-negative weights a1, a2, . . . , an such that∑n

i=1 ai = 1, ai ≥ 0, ∀i, the following inequality holds:

f

 n∑
i=1

aixi

 ≤ n∑
i=1

aif(xi).

The 0-order characterization of convexity is equivalent to the base case of Jensen’s
inequality.

∀x1, x2 ∈ Rn, ∀α ∈ [0, 1], f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2).

Remark 3. Given the additional assumption that E[∥gk∥2] ≤ G2, we have the fol-
lowing inequality for the function value at the averaged iterates x̄K compared to the
optimal value F (x∗):

F (x̄K)− F (x∗) ≤ ηG2

2
+

D2

2ηK
,

where x̄K := 1
K

∑K
k=1 xk. To minimize the upper bound, we choose η to satisfy

ηG2

2
=

D2

2ηK

From here we have
η2G2K = D2 ⇒ η =

D

G
√
K

Plugging it back to the bound and we get:
ηG2

2
+

D2

2ηK
=

DG√
K

,

It is noted that we need to identify a condition such that the assumption of the
expected sqaured size of the stochastic gradient gk does hold, i.e., E[∥gk∥2] ≤ G2 holds.
One of the remedy is by considering that the underlying function F (·) is Lipschitz and
using Projected SGD. Specifically, recall that a function is G-Lipschitz over C with
respect to the norm ∥ · ∥, if for any x, y ∈ C, |f(x)− f(y)| ≤ G∥x− y∥, where G > 0.
Then, the following theorem states that a Lipschitz function over a bounded domain
has a bounded gradient.

Theorem 2. Suppose f(·) : C → R is a convex function. Then f(·) is G-Lipschitz
over C with respect to a norm ∥ · ∥ if and only if for any x ∈ C, its sub-gradients
gx ∈ ∂f(x) satisfy

∥gx∥∗ ≤ G,

where G is a constant and ∥ · ∥∗ denotes the dual norm.
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For the proof, see Lemma 2.6 in Online Learning and Online Convex Optimization
by Shai Shalev-Shwartz [2].

From here we move to the next section on how to derive these results.

Proof. (of Theorem 2) Given the update step of SGD, the expectation of the squared
norm between the next iterate and the optimum is expressed as:

E
[
∥xk+1 − x∗∥2

]
= E

[
∥xk − ηgk − x∗∥2

]
= E

[
∥xk − x∗∥2 − 2η⟨gk, xk − x∗⟩+ η2∥gk∥2

]
.

Rearranging and using linearity of expectation gives:

E
[
⟨gk, xk − x∗⟩

]
=

1

2η
E
[
∥xk − x∗∥2 − ∥xk+1 − x∗∥2

]
+

η

2
E
[
∥gk∥2

]
= Ez1−zk

[
⟨gk, xk − x∗⟩

]
(since the expected values of the first term is expectation over all the
randomness in k iterations)

=
∑
∗

Pr(z1:k−1 = ∗)Ezk

[
⟨gk, xk − x∗⟩|z1:k−1 = ∗

]
(z1:k−1 is defined in the form of the realization of the randomness of
z from 1 to k − 1)

= Ez1−zk−1

[
Ezk

[
⟨gk, xk − x∗⟩|z1:k−1

]]
(xk := realization of z1:k−1, xk is determined by z1:k−1)

= Ez1−zk−1

[
Ezk

[
⟨gk, xk − x∗⟩|xk

]]
,

Additionally, we have

Ezk

[
⟨gk, xk − x∗⟩|xk

]
=

n∑
i=1

Pr(ik = i)⟨gk, xk − x∗⟩

= ⟨∇F (xk), xk − x∗⟩ given xk

In summary, we note that the expectation E[⟨gk, xk − x∗⟩] can be expanded as:

Ez1:k[⟨gk, xk − x∗⟩] = Ez1:k−1[Ezk [⟨gk, xk − x∗⟩|z1:k−1]]

= Ez1:k−1[Ezk [⟨gk, xk − x∗⟩|xk]]

= Ez1:k−1[⟨∇F (xk), xk − x∗⟩]
= Ez1:k[⟨∇F (xk), xk − x∗⟩]
≥ Ez1:k[F (xk)− F (x∗)] by first order convexity of F
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By chaining the above inequalities, we have:

E[F (xk)− F (x∗)] ≤ Ez1:k[⟨gk, xk − x∗⟩]

=
1

2η
E
[
∥xk − x∗∥22 − ∥xk+1 − x∗∥22

]
+

η

2
E
[
∥gk∥22

]
.

Summing up over K iterations, we obtain:

E

 K∑
k=1

F (xk)− F (x∗)

 ≤ ∥x1 − x∗∥22
2η

+
η

2

K∑
k=1

E
[
∥gk∥22

]
.

2 Non-convex SGD
Theorem 3. Assume that the variance of the stochastic gradient ∇f(x; z) is at most
σ2 for all x, i.e.,

V ar(∇f(x; z)) = Ez

[
∥∇f(x; z)−∇F (x)∥22

]
≤ σ2.

Suppose F (·) is L-smooth. Then, SGD with the step size η ≤ 1
L

satisfies

K∑
k=1

E
[
∥∇F (xk)∥22

]
≤ 2(F (x1)− F∗)

η
+ ηLσ2K.

Remark 4: If the step size η is chosen as

η = min

(
1

L
,

√
F (x1)− F∗

σ2LK

)
,

then the sum of expected squared norms of the gradients over K iterations is bounded
by

K∑
k=1

E
[
∥∇F (xk)∥22

]
≤ 2(F (x1)− F∗)L+ 3σ

√
(F (x1)− F∗)LK.

Remark 5: If x̂ is selected uniformly at random from {x1, . . . , xK}, then using Jensen
we have

E
[
∥∇F (x̂)∥

]
≤
√

2(F (x1)− F∗)L

K
+

3σ

K1/4

√
(F (x1)− F∗)L.
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2.1 Mini-batch SGD

Algorithm 3 Minibatch SGD
1: for k = 1, 2, . . . , K do
2: for i = 1, 2, . . . , B do
3: gk,i = ∇f(xk; z(k−1)B+i).
4: end for
5: gk =

1
B

∑B
i=1 gk,i, so here E[gk] = ∇F (xk)

6: xk+1 = xk − ηgk.
7: end for

Remark 6. B is the batch size. In vanilla SGD we have B = 1.

Lemma 1. Assume that the variance of the stochastic gradient ∇f(x; z) is at most
σ2 for all x, i.e.,

Ez

[
∥∇f(x; z)−∇F (x)∥22

]
≤ σ2.

Then, for the mini-batch gradient gk, it holds that

Ez

[
∥gk −∇F (xk)∥22

]
≤ σ2

B
,

where B is the mini-batch size.

Proof. The variance of mini-batch stochastic gradient is given by

gk ≜
1

B

∑
i∈[B]

gk,i

We have that

Ez

[
∥gk −∇F (xk)∥22

]
= Ez


∥∥∥∥∥∥ 1B

∑
i∈[B]

(gk,i −∇F (xk))

∥∥∥∥∥∥
2

2


= Ez

 1

B2

∑
i,j

⟨gk,i −∇F (xk), gk,j −∇F (xk)⟩


= Ez

 1

B2
(
∑
i

∥∥(gk,i −∇F (xk))
∥∥2
2
) +

∑
j ̸=i

⟨gk,i −∇F (xk), gk,j −∇F (xk)⟩
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The second term is 0 since for each element in the summation, the expection is 0:

E
[
⟨gk,i −∇F (xk), gk,j −∇F (xk)⟩

]
=⟨E

[
gk,i −∇F (xk)

]
,E
[
gk,j −∇F (xk)

]
⟩

=⟨0, 0⟩
=0

Thus,

Ez

[
∥gk −∇F (xk)∥22

]
=Ez

 1

B2

∑
i,j

⟨gk,i −∇F (xk), gk,j −∇F (xk)⟩


=Ez

 1

B2
(
∑
i

∥∥(gk,i −∇F (xk))
∥∥2
2
)


≤ 1

B2
Bσ2

=
σ2

B

2.2 Iteration complexity of Mini-Batch SGD
Recall the result of the last theorem for a randomly selected x̂ from {x1, . . . , xK}, we
have:

E
[
∥∇F (x̂)∥

]
≤
√

2(F (x1)− F∗)L√
K

+

√
3σ
√

(F (x1)− F∗)L

K1/4
.

Now, let σ ← σ
√
B for Mini-batch SGD.

Theorem 4. Assume the variance of the stochastic gradient ∇f(x; z) is at most σ2.
Set

η = min

(
1

L
,

√
F (x1)− F∗

(σ/
√
B)
√
LK

)
,

then Mini-batch SGD achieves

E
[
∥∇F (x̂)∥

]
≤
√
2(F (x1)− F∗)L√

K
+

√
3σ
√

(F (x1)− F∗)L

(BK)1/4
. (2)
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2.3 Comparison between vanilla SGD and mini-batch SGD
Now assume that the last term in (2) dominates (i.e., being the slow term). Then,
we can compare vanilla SGD and mini-batch SGD as follows.

mini-batch SGD vanilla SGD
convergent rate 1

(BK)
1
4

1

K
1
4

cost per iteration B 1

total cost over K BK K

convergent rate 1

(total cost)
1
4

1

(total cost)
1
4

In terms of the total cost, there is no difference of using different batch size. But for
the mini-batch SGD, we can do the computation of stochastic gradients in a mini-
batch in a parallel fashion. So in terms of the actual running time, mini-batch SGD
would be faster comparing to SGD, provided by the aid of parallel computing.

It is noted that we cannot keep increase the batch size and available computing
units to keep improving mini-batch SGD, since at some threshold, the first term√

2(F (x1)−F∗)L√
K

in (2) dominates and increasing the batch size after this threshold will
just be harmful as it increases the cost. It is also noted that the O(1/

√
K) rate is

the rate of GD.

Bibliographic notes
For more details about SGD, see e.g., [1]. The material for mini-bach SGD is based
on [3].
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