
DSC 211 Introduction to Optimization Winter 2024 Instructor: Jun-Kun Wang
Scribe: Merlin Chang, Marialena Sfyraki January 25, 2024

Lecture 6: Coordinate Descent (CD)

1 (Randomized) Coordinate Descent

1.1 Algorithm
Consider the general unconstrained optimization problem

min
x∈Rd

f (x) .

Recall the definition of the gradient:

Definition 1. Let f : Rd → R be a differentiable function. Then, the function
∇f : Rd → Rd defined by

∇f (x) =


∂f(x)
∂x[1]
∂f(x)
∂x[2]

...
∂f(x)
∂x[d]

 ∈ Rd

is called the gradient of f at x.

Based on the previously described concept of the gradient, we are now able to present
a detailed formulation of the (Randomized) Coordinate Descent algorithm as follows:

Algorithm 1 (Randomized) Coordinate Descent
1: for k = 1, 2, . . . do
2: Randomly pick a coordinate ik ∈ [d].
3: xk+1[ik] = xk[ik]− η∇f (xk) [ik].
4: end for

Remark: Observe that only the ik-th element is updated at each timestep.

1.2 Advantags of Coordinate Descent (CD)
The examples below demonstrate the advantages of the introduced Coordinate De-
scent algorithm in comparison to the earlier discussed Gradient Descent.

1

Case I: Let f(x) = log
(
1 + exp

(
−yz⊤x

))
. Then, the gradient of f can be computed

as

∇f(x) =
exp

(
−yz⊤x

)
1 + exp

(
−yz⊤x

) (−yz) ∈ Rd.

Thus, the number of computations/flops for the GD algorithm are

#computations/flops = d︸︷︷︸
dot product

+ 1︸︷︷︸
addition

+ 1︸︷︷︸
multiplication

+ 1︸︷︷︸
division

+ d︸︷︷︸
dot product

= 2d+ 3.

In computing, when we are concerned with the number of floating point operations
computed per second, we use the short hand measure of flops. Although the true
computation cycles needed for addition and multiplication are very different, we are
omitting these details in our analysis.
Additionally, the i-th coordinate of the gradient is

[
∇f(x)

]
i
=

exp
(
−yz⊤x

)
1 + exp

(
−yz⊤x

) (−yz [i]) ∈ R.

Thus, the number of computations/flops for the CD algorithm are

#computations/flops = d︸︷︷︸
dot product

+ 1︸︷︷︸
addition

+ 1︸︷︷︸
multiplication

+ 1︸︷︷︸
division

+ 1︸︷︷︸
addition

= d+ 4.

Therefore, we can conclude that

Cost of CD
Cost of GD

≈ 1

2

which is not a significant speedup.
Case II: Let f(x) = 1

2
x⊤Ax − b⊤x, where A ∈ Rd×d. The gradient of f can be

computed as

∇f(x) = Ax− b.

Thus, the number of computations/flops for the GD algorithm are

#computations/flops = d2 + d.

Additionally, the i-th coordinate of the gradient is

[
∇f(x)

]
i
= [Ax− b]i =

d∑
j=1

Aijxj + bi.

2

Thus, the number of computations/flops for the CD algorithm are

#computations/flops = d+ 1.

In this case, we can conclude that

Cost of CD
Cost of GD

=
1

d
.

Remark. The extent of superiority of CD over GD varies with the objective function.

1.3 Coordinate-wise Smooth
Definition 2. We say a function f(·) : Rd → R is coordinate-wise smooth if for all
i ∈ [d] and x ∈ Rd, the function

gi,x(v) := f(x+ v ei) : R→ R, ei is the standard basis

satisfies
gi,x(v) ≤ gi,x(0) +∇gi,x(0)v +

Li

2
v2,

for any v ∈ R and a finite constant Li > 0.

Remark. Observe that

∇gi,x(v) = ⟨∇f (x+ vei) , ei⟩ =
[
∇f (x+ vei)

]
i

and if f is twice continuously differentiable, then

∇2gi,x(v) = ⟨∇2f (x+ vei) ei, ei⟩ =
[
∇2f (x+ vei)

]
i,i
.

Recall the Fundamental Theorem of Calculus:

Theorem 1 (Fundamental Theorem of Calculus). Let h : R → R be a continuously
differentiable function. Then,

h(b)− h(a) =

∫ b

a

ḣ(α) dα.

Remark. An equivalent definition of coordinate-wise smoothness when the function
f(·) is convex is

|∇gi,x(v)−∇gi,x(0)| ≤ Li |v| , ∀i ∈ [d], ∀x ∈ Rd,

3

that is the gradient is Lipschitz. Furthermore, if the function f(·) is twice continuously
differentiable and we have[

∇2f (x+ αei)
]
i,i
≤ Li , ∀i ∈ [d], ∀x ∈ Rd, ∀α ∈ [0, v] (1)

then, by the Fundamental Theorem of Calculus

|∇gi,x(v)−∇gi,x(0)| =
∣∣∣∣∫ v

0

∇2gi,x(α)dα

∣∣∣∣ = ∣∣∣∣∫ v

0

[
∇2f (x+ αei)

]
i,i
dα

∣∣∣∣ ≤ Li |v|, (2)

∀i ∈ [d], ∀x ∈ Rd.
Hence, we can relate the smoothness constant of f(·) and the coordinate-wise

smoothness of Li as follows:

L = λmax

(
∇2f (x)

)
≤ tr

(
∇2f (x)

)
≤

d∑
i=1

Li. (3)

1.4 Iteration Complexity of Randomized Coordinate Descent
Theorem 2. Suppose f(·) : Rd → R be µ-strongly convex and satisfies coordinate-
wise smooth with the constant Li for each i ∈ [d]. Denote S :=

∑
i Li. Pick ik = i

with Pr[ik = i] = Li∑
j=1 Lj

= Li

S
. Then,

E[f(xK+1)]− f∗ ≤
(
1− µ

S

)K

(f(x1)− f∗).

Remark. Using the above theorem, we can see that in order to get an ϵ-expected
optimality gap for a µ-strongly convex and coordinate-wise smooth function f using
the CD algorithm, the number of iterations K should be

K =
S

µ
log

(
f (x1)− f∗

ϵ

)
.

We have proven previously that in order to get an ϵ optimality gap for for a µ-strongly
convex and L-smooth function f using the GD algorithm, the number of iterations
K should be

K =
L

µ
log

(
f (x1)− f∗

ϵ

)
.

Question. How can we compare S =
∑

i Li and L?
From the coordinate-wise smoothness (1) and (2), we can estimate Li as

Li ≈
[
∇2f (x)

]
i,i
.

4

Then,

S =
d∑

i=1

Li ≈
d∑

i=1

[
∇2f (x)

]
i,i
= tr

(
∇2f (x)

)
.

Additionally, by L-smoothness we know that

L = λmax

(
∇2f (x)

)
.

Thus,

S

L
≈

tr
(
∇2f (x)

)
λmax

(
∇2f (x)

) .
This is roughly the ratio between the runtime of gradient descent and coordinate
descent, since

iterations of CD
iterations of GD

≈
O(S

µ
log(1

ϵ
))

O(L
µ
log(1

ϵ
))
≈ S

L
≈

tr
(
∇2f (x)

)
λmax

(
∇2f (x)

) .
If we take the cost per iteration for both algorithms into account we have

CD running time
GD running time

=
iterations of CD
iterations of GD

× cost per k of CD
cost per k of GD

≈
tr
(
∇2f (x)

)
λmax

(
∇2f (x)

) × cost per k of CD
cost per k of GD

.

Remark. Observe that when the spectrum (distribution of eigenvalues) of the Hes-
sian is skewed so that tr(∇2f(x)) is not very much larger than λmax(∇2f(x)), then
CD might have an advanatage over GD.

1.5 Progress of a coordinate descent step
Lemma 1. If we set ηk = 1

Lik
, then

f(xk+1) ≤ f(xk)−
1

2Lik

(∇f(xk)[ik])
2.

Proof. Recall that we have

gi,x(v) := f(x+ v ei) : R→ R,

and
gi,x(v) ≤ gi,x(0) +∇gi,x(0)v +

Li

2
v2,

where
∇gi,x(v) = ⟨∇f (x+ vei) , ei⟩ =

[
∇f (x+ vei)

]
i
.

Let

5

• v ← −ηk∇f(xk)[ik] and ηk =
1

Lik
.

• x← xk.

• i← ik.

Since

xk + vei = xk − ηk∇f(xk)[ik]ei = xk+1

Then, we have

gik,xk

(
ηk∇f(xk)[ik]

)︸ ︷︷ ︸
=f(xk+1)

≤ gik,xk
(0)︸ ︷︷ ︸

=f(xk)

−∇gik,xk
(0)︸ ︷︷ ︸

=∇f(xk)[ik]

ηk∇f(xk)[ik] +
Lik

2
η2k

(
∇f(xk)[ik]

)2 (4)

= f(xk)−
1

Lik

(∇f(xk)[ik])
2 +

Lik

2

1

Lik
2 (∇f(xk)[ik])

2 (5)

= f(xk)−
1

2Lik

(∇f(xk)[ik])
2. (6)

1.6 Progress at iteration k in expectation
Lemma 2. Suppose f satisfies the conditions of Theorem 2. At iteration k, randomly
pick ik ∈ [d] with probability Pr[ik = i] = pi. Then,

Eik [f(xk+1)] ≤ f(xk)−
d∑

i=1

pi
2Li

(∇f(xk)[i])
2.

Proof. By Lemma 1, we have

f(xk+1) ≤ f(xk)−
1

2Li

(∇f(xk)[i])
2.

Then the expectation of the f(xk+1) is

E
[
f(xk+1)

]
=

d∑
i=1

pif(xk+1)

≤
d∑

i=1

(
pif(xk)−

pi
2Li

(∇f(xk)[i])
2

)
, by Lemma 1

= f(xk)−
d∑

i=1

pi
2Li

(∇f(xk)[i])
2.

6

1.7 Proof for Theorem (2)
Recall Theorem 2: Suppose f(·) : Rd → R be µ-strongly convex and satisfies coordinate-
wise smooth with the constant Li for each i ∈ [d]. Denote S :=

∑
i Li. Pick ik = i

with Pr[ik = i] = Li∑
j=1 Lj

= Li

S
. Then,

E[f(xK+1)]− f∗ ≤
(
1− µ

S

)K

(f(x1)− f∗).

Proof. By Lemma 2, we know that

Eik [f(xk+1)] ≤ f(xk)−
d∑

i=1

pi
2Li

(∇f(xk)[i])
2

= f(xk)−
1

2S

d∑
i=1

(∇f(xk)[i])
2 , since pi =

Li

S

= f(xk)−
1

2S
∥∇f(xk)∥22 , by 2-norm definition

≤ f(xk)−
µ

S

(
f(xk)− f∗

)
, by µ-gradient dominance

By subtracting f∗ on both sides, we get

Eik [f(xk+1)]− f∗ ≤ f(xk)−
µ

S

(
f(xk)− f∗

)
− f∗

⇔ Eik

[
f(xk+1)− f∗

]
≤

(
1− µ

S

)(
f(xk)− f∗

)
.

Denote δk+1 := f(xk+1)− f∗. Then, we have

Ei1,...,,ik [δk+1] = Ei1,...,ik−1

[
Eik [δk+1|i1 . . . , ik−1]

]
, by the law of total expectation

≤ Ei1,...,ik−1

[(
1− µ

S

)
δk

]
, by previously shown inequality

=

(
1− µ

S

)
Ei1,...,ik−1

[δk] , since xk is determined by i1, . . . , ik−1

≤
(
1− µ

S

)(
1− µ

S

)
Ei1,...,ik−2

[δk−1]

≤
(
1− µ

S

)k

δ1 , since δ1 is deterministic

=

(
1− µ

S

)k

(f(x1)− f∗)

7

2 Stochastic Optimization

2.1 Algorithm
Now we will look at Stochastic Gradient Descent (SGD). Our objective is to

min
x

F (x)

where F (x) := Ez[f(x; z)].

Algorithm 2 Stochastic Gradient Descent
1: for k = 1, 2, . . . do
2: Compute a stochastic gradient gk that satisfies Ez[gk] = ∇F (xk)

3: xk+1 = xk − ηgk.
4: end for

Remark. Randomized Coordinate Descent is a particular instance of SGD. Recall
the update step of Randomized Coordinate Descent

xk+1[ik] = xk[ik]− ηk∇f (xk) [ik].

The update step can be written equivalently as

xk+1 = xk − ηk∇
[
f (xk)

]
ik
eik .

Then, we can observe that

gk = ∇
[
f (xk)

]
ik
eik .

Note that

E[gk] = E
[
∇
[
f (xk)

]
ik
eik

]
=

d∑
i=1

pi∇
[
f (xk)

]
i
ei =

1

d
∇f(xk) ∈ Rd,

so up to a scaling d (which can be absorbed in the step size η), it can be viewed as
an unbiased estimate of the full gradient ∇f(xk).
Remark. A stochastic gradient gk for a function F at point xk is the gradient, whose
expectation is the full gradient, Ez[gk] = ∇F (xk).

One way to interpret F (x) is to think in terms of a linear regression model. For
example, in the case of linear regression, the model’s loss function, f is in the term

(y − z⊤x)2

8

where (y, z) is a particular labeled instance in the training set. What we ultimately
want to minimize if the following:

min
x

Ez

[
(y − z⊤x)2

]
which is the same as

min
x

Ez

[
(f(x; z)

]
This is saying that we want to minimize the expected loss of our model when sampling
z from an underlying distribution. In practice, we do not have access to the distribu-
tion of z, namely the distribution of labeled data, instead only a sampled subset. We
can in turn treat the sampled set(training set) as the distribution and minimize the
empirical loss, which is defined as:

min
x

1

n

n∑
i=1

(yi − z⊤i x)
2

This finite-sum problem is refererd to as empirical risk minimization in machine learn-
ing literature.

Bibliographic notes
Part of the materials in this lecture is based on Section 6.3 of [1].

References
[1] Aaron Sidford Optimization Algorithms 2023

9

	(Randomized) Coordinate Descent
	Algorithm
	Advantags of Coordinate Descent (CD)
	Coordinate-wise Smooth
	Iteration Complexity of Randomized Coordinate Descent
	Progress of a coordinate descent step
	Progress at iteration k in expectation
	Proof for Theorem (2)

	Stochastic Optimization
	Algorithm

