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1 Preliminary:
Constrained Convex Optimization: Given a convex function f : C → R, the
task of constrained optimization entails solving the following problem:

min
x∈C

f(x), where C ⊂ Rd is a convex set.

Similarly, the problem of unconstrained optimization can be defined as:

min
x∈Rd

f(x)

In the unconstrained optimization case, if f(·) is convex, and x∗ is the optimal point,
i.e. x∗ = argminx∈Rd f(x), then by the first-order optimality condition (for interior
points) we have that ∇f(x∗) = 0. In other words, if the gradient of a function
vanishes at a point, the point is a candidate for a local minimizer of f . Observe that
in the constrained optimization problem case, the optimizer x∗ might be a boundary
point, for which ∇f(x∗) ̸= 0. Therefore, we will introduce an optimiality condition
using the subgradient.
Question. What are the optimality properties of the optimal point of a convex
constrained optimization?

Definition 1. (Subgradient) For a convex and not necessarily differentiable func-
tion f(·), defined over a set C, we say gx is a subgradient of f(·) at x ∈ C, if for any
y ∈ C we have

f(y) ≥ f(x) + ⟨gx, y − x⟩.

The set of gx is called the sub-differential, denoted as ∂f(x).

Remark: The set ∂f(x) is a convex set.

Example: Let f : R → R be defined by f(x) = |x|. Observe that f is convex but
not differentiable at x = 0. If g0 is the subgradient at x = 0, then,

|y| ≥ 0 + ⟨g0, y − 0⟩ ⇒ g0 ∈ [−1, 1]
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Using the subgradient, we have the following optimality condition for convex-
constrained optimization problems:

Theorem 1. (Optimality condition for convex-constrained optimization:)
Assume f is a convex function, then x∗ is a global optimal solution, where

x∗ = argmin
x∈C

f(x)

if and only if there exists a subgradient gx∗ ∈ ∂f(x∗) such that for any y ∈ C

⟨gx∗ , y − x∗⟩ ≥ 0

Proof. We present the proof for one direction (“⇐”).
Let y ∈ C. Then,

f(y) ≥ f(x∗) + ⟨gx∗ , y − x∗⟩ (by definition of the subgradient)
≥ f(x∗) (by assumption ⟨gx∗ , y − x∗⟩ ≥ 0)

Since this holds for all y ∈ C we have that,

x∗ = argmin
x∈C

f(x).

The proof for the other direction can be found in [1], under Theorem 2.4.11

2 Projected Gradient Descent
Projected gradient descent proceeds very similar to gradient descent, where we op-
timize following the descent direction. If at any iteration, we are outside of the
constrained set C, then we will project xk+1 back into the set C. The projection with
respect to the Euclidean norm of y onto set C is defined as

ProjC(y) := argmin
x∈C

||y − x||2

In orther words, the projection of y onto C is equivalent to finding the point in C

with the minimum Euclidean distance to x.
A formal statement of the PGD algorithm is given below.

Algorithm 1 Projected Gradient Descent
1: for k = 1, 2, . . . do
2: xk+1 = ProjC [xk − η∇f(xk)]

3: end for
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or

Algorithm 2 Projected Gradient Descent (Rewrite)
1: for k = 1, 2, . . . do
2: yk+1 = xk − η∇f(xk) (Gradient Descent step)
3: xk+1 = ProjC(yk+1) (Projection)
4: end for

2.1 Convergence Rate of GD and PGD:
Let K be the number of iterations. Then, the convergence rates of

• GD for minx∈Rd f(x):

ϵ-Optimality Gap: f(xK)−minx∈Rd f(x) ≤ ϵ

L-smooth convex O

(
L
K

)
L-smooth and µ-strongly convex O(exp(− µ

L
K))

• PGD for minx∈C f(x):

ϵ-Optimality Gap: f(xK)−minx∈C f(x) ≤ ϵ

L-smooth convex O

(
L
K

)
L-smooth and µ-strongly convex O(exp(− µ

L
K))

2.2 When to Choose PGD?
The projection step needed in PGD is in and of itself an optimization problem. Thus,
when the ProjC(yk+1) has a closed-form solution or there exists an efficient algorithm
to solve it, we can choose PGD to solve constrained problems.

2.3 How to Implement the Projection
Suppose we want to solve the following problem

x̂ = ProjC(y) := argmin
x∈C

∥y − x∥2

Example 1: (With closed-form solution)

Let C := {x ∈ Rd : ||x||2 ≤ 1}. Then,
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x̂ =

 y
||y||2 , if y ̸∈ C

y , otherwise

Example 2: (With closed-form solution)

Let C := {x ∈ Rd : ||x||∞ ≤ 1}, with ||x||∞ := maxi |x[i]|. This implies that
∀x ∈ C we have that ∀i ∈ [d],−1 ≤ x[i] ≤ 1. Now, we have the following cases

• If y /∈ C:

x̂[i] =


−1 , if y[i] ≤ −1

1 , if y[i] ≥ 1

y[i] , otherwise

• If y ∈ C:
x̂ = y

Example 3: (Without closed-form solution)

Let C := {x ∈ Rd : ||x||1 ≤ 1}. By definition, (z)+
∆
= max{0, z}.

If y /∈ C,
x̂[i] = sign(y[i]) (|y[i]| − λ)+,

where λ is the solution to
∑d

i=1(|y[i]| − λ)+ = 1.

Later, we will know how to derive the solution using duality theory and KKT
conditions.

Remark: Depending on the application, it may or may not be necessary to have
constraints when solving optimization problems. For example, in machine learning,
it’s common to add a regularization to the original objective function; however, for
domains like economics or operational research, it’s important to take constraints into
consideration.

3 Frank-Wolfe Method
Frank-Wolfe(FW) method also known as conditional gradient method, is an alter-
native to projected gradient descent. It could be applied in scenarios where the
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projection is computationally inefficient to calculate. Below is a formal statement of
the Frank-Wolfe method algorithm.

Algorithm 3 Frank-Wolfe method
initialize a starting point x1 ∈ C.

1: for k = 1, 2, . . . do
2: vk = argminv∈C⟨v,∇f(xk)⟩ (Linear optimization)
3: xk+1 = (1− ηk)xk + ηkvk where ηk ∈ [0, 1]

4: end for

Compared to projected gradient descent rather than taking a gradient step and
then projecting onto the convex constraint set, the Frank-Wolfe method optimizes
an objective defined by the gradient inside the convex set. Since xk+1 is a convex
combination of xk and vk in the convex set C, we know xk+1 ∈ C. (This statement
can be proved by induction.)

3.1 Convergence analysis of FW Method:
Theorem 2. Assume f(·) is a L-smooth convex function. Denote D as the diameter
of the set C. Let ηK = min{1, 2

K
} ∈ [0, 1], then FW achieves:

f(xK)− f(x∗) ≤
2LD2

K
≈ O

(
1

K

)
.

Remark. We have that ||x− y|| ≤ D = diam C, ∀x, y ∈ C.

Proof. By L-Smoothness we have,

f(xK+1) ≤ f(xK) + ⟨∇f(xK), xK+1 − xK⟩+
L

2
||xK+1 − xK ||2.

Additionally, by the update rule of FW, we have

xK+1 − xK = ηk(vK − xK).

Substituting in the above equation, we get

f(xK+1) ≤ f(xK) + ηK⟨∇f(xK), vK − xK⟩+
Lη2K
2

||vK − xK ||2.

Since
||vK − xK ||2 ≤ D2
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we have
f(xK+1) ≤ f(xK) + ηK⟨∇f(xK), vK − xK⟩+

Lη2K
2

D2.

Now, since
vK = argmin

v∈C
⟨∇f(xK), v⟩,

we have
⟨∇f(xK), vK⟩ ≤ ⟨∇f(xK), x∗⟩.

Thus,

f(xK+1) ≤ f(xK) + ηK⟨∇f(xK), x∗ − xK⟩+
Lη2K
2

D2.

By the definition of convexity,

f(x∗)− f(xK) ≥ ⟨∇f(xK), x∗ − xK⟩,

we have,

f(xK+1) ≤ f(xK) + ηk(f(x∗)− f(xK)) +
Lη2K
2

D2.

Denoting the minimum value and the optimality gap respectively as,

f∗ := min
x∈C

f(x) and δK+1 := f(xK+1)− f∗,

and substituting in the equation we get,

δK+1 ≤ (1− ηK)δK +
Lη2KD

2

2
. (1)

Lemma 1. Let {δK} be a sequence that satisfies the recurrence

δK+1 ≤ δK(1− ηK) + η2Kc.

Then taking η = min{1, 2
K
}, we get

δK ≤ 4c

K
.

For equation 1, taking

c =
LD2

2
,

we get

δK ≤ 4c

K
=

2LD2

K
.

Hence, proved.

The proof of the lemma 1 can be found in the book [2] in Chapter 9.
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3.2 Applications of Frank-Wolfe Method - Matrix Comple-
tion

Definition 2. (Nuclear Norm:) The nuclear norm of a matrix A denoted as ||A||∗
is defined as the sum of all singular values of the the matrix.

||A||∗ =
∑
i

σi(A)

By the singular value decomposition, if A = UΣV T , then

Σ =


σ1(A)

σ2(A)
. . .


The matrix completion problem is defined as - given a rating matrix M ∈ Rm×n

which has some observed value for each (i, j). We define another matrix X which is
partially filled with 0s. We need to find an optimum X over an r−nuclear norm ball
such that it closely approximates M . This is defined by the objective:

min
X∈Rm×n:||X||∗≤r

f(X)

where f(X) :=
1

2
||X − PO(M)||22

Here PO(M) = O ⊙M where O is a matrix of binary entries. The operation PO(M)

gives us a matrix of observable entries as defined by O while the rest being 0, that is

PO(M)i,j =

Mi,j if (i, j) is an observed entry
0 otherwise.

Calculating the gradient of f

∇f(X) = X − PO(M) ∈ Rm×n.

Applying the FW method to this objective, the linear optimization step is

vk = argmin
||v||∗≤r

⟨∇f(Xk),v⟩.

The minimum of this objective can be obtained as:

vk = −ru1w1
T ,
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where u1 and w1 are the top left singular vector and the top right singular vector
of ∇f(X), respectively, which can be obtained easily via techniques such as power
method.

This means that the run time of the FW method for the matrix completion prob-
lem only involves computing the first left and right singular vectors of ∇f(X) and
thus follows - Õ(m × n) (quadratic) time complexity per iteration. Comparing this
with PGD. In PGD, the projection step will be defined as

xk+1 = Proj||v||∗≤r(yk+1).

This objective would, however, require us to calculate the SVD of ∇f(X). Thus
the time complexity of each iteration would be of the order Õ(m × n × min(m,n))

(cubic). The actual running cost of an algorithm can be computed as the total number
of iterations required to reach an ϵ optimality gap (called the iteration complexity)
times the iteration cost. Because of the cheap iteration cost compared to PGD, for
the task of matrix completion with a large matrix size, FW would be preferred over
PGD, even though the convergence rate of FW is not better than PGD.

3.3 Convergence Analysis when f(·) is smooth and strongly
convex

Section 3.1 describes the behaviour of the FW method when f(·) is L-smooth and
convex. We observed a convergence rate of O(1/K). Now, if the function is smooth
and strongly convex how does this convergence rate change, do we observe a faster
rate than O(1/K)? The answer is that it depends (on the constraint set C).

Negative Example: If C is a probability simplex defined as

C := {x ∈ Rd :
d∑

i=1

x[i] = 1, x[i] ≥ 0}

then there exists a strongly convex smooth function f(·) such that FW method con-
verges to a ϵ optimality gap in at least K iterations, where

K = Ω

(
max

(
L

ϵ
,
d

2

))
.

This implies ϵ = O(1/K). For this C, the FW method cannot achieve a better com-
plexity than O(1/K). Detailed proof of the statement can be found in the work by
Lan(2014)[3].

Positive Example:
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Definition 3. (Strongly Convex Set) When a set C is a µ-strongly convex set
w.r.t a norm || · ||, i.e. x, z ∈ C implies that a ball centered at αx + (1 − α)z with a
radius in α(1− α)µ

2
||x− z||2 is in C, where α ∈ [0, 1].

A function f(·) exists, which is L-smooth and µ-strongly convex such that FW con-
verges in K iterations to a ϵ optimality gap where:

K = O

(√
L

µ
log

1

ϵ

)
The proof can be found in the work by Wang et al.(2023) [4].
These examples show that the behaviour of the FW method depends on the choice
of the constraint set C.
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