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Lecture 4: Reduction

1 Review

Theorem 1. The µ-strong convexity implies the µ-gradient dominant condition.

Remark. The condition number κ := L
µ
≥ 1.

Proof. Let f be a µ-strongly convex and L-smooth function. For simplicity, let us
think of µ as the strong convexity constant, since from Theorem 1 we have that
µ-strong convexity implies the µ-gradient dominant condition. Additionally, by the
second-order characterization of strong convexity we have that

y⊤∇2f(x)y ≥ µ∥y∥2, ∀x ∈ C, y ∈ Rn, µ > 0.

By the second-order characterization of L-smoothness we have that

y⊤∇2f(x)y ≤ L∥y∥2, ∀x ∈ C, y ∈ Rn.

If we choose the Euclidean norm ∥ · ∥2 and a normalized vector y, that is y ∈ Rn such
that ∥y∥2 = 1, then the above inequalities imply that

λmin(∇2f(x)) ≥ µ,

λmax(∇2f(x)) ≤ L,

where λmin and λmax are the min and max eigenvalue of ∇2f(x), respectively. This
suggests the following inequality

0 < µ ≤ λmin ≤ λmax ≤ L,

which entails that

κ :=
L

µ
≥ 1.

Remark. exp(−x) is smooth in a bounded region x ∈ [−c, c], c <∞.
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Proof.

∇2 exp(−x) = exp(−x) ∈ [exp(−c), exp(c)] > 0,

which means there exists L > 0 such that the second-order characterization of
smoothness is satisfied.

Remark. exp(−x) is differentiable but not smooth for x ∈ R.

Remark. Many optimization people call exp(−µ
L
k) linear rate (consider logarithm),

and LD2

k
correspondingly sub-linear rate[? ].

Theorem 2. Assume f(·) is µ-gradient dominant and L-smooth, then gradient descent
with η = 1

L
satisfies

f(xk+1)− min
x∈Rd

f(x) ≤
(
1− µ

L

)k (
f(x1)− min

x∈Rd
f(x)

)
.

Theorem 3. Assume f(·) is convex and L-smooth on Rd, then gradient descent with
η = 1

L
satisfies

f(xk+1)− min
x∈Rd

f(x) ≤ 2LD2

k

where D := max
k
∥xk − x∗∥2 ≤ ∥x1 − x∗∥2, x∗ := argmin f(x).

Remark. We also have the below inequality regarding to the linear rate:(
1− µ

L

)k

≤ exp

(
−µ

L
k

)
. (1)

2 Reduction

Our goal is to solve the general unconstrained optimization problem

min
x

f(x)

We will not modify the underlying algorithm, and we will consider the following
scenarios:

1. Given an algorithm with strong guarantees for smooth and strongly convex
function, how to make it work for smooth convex functions with strong
guarantees?
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2. Given an algorithm with strong guarantees for smooth and strongly convex
function, how to make it work for non-smooth and strongly convex functions
with strong guarantees?

3. Given an algorithm with strong guarantees for smooth and strongly convex
function, how to make it work for convex L0-Lipschitz fucntions that are
neither strongly convex nor smooth?

We will study a technique called Reduction.

Lemma 1 (To be proved in HW2). Suppose f(x) is Lf -smooth convex, g(x) is
Lg-smooth and µg-strongly convex. Then, the function defined by

f̃(x) := f(x) + g(x)

is µf̃ -strongly convex and Lf̃ -smooth, where µf̃ := µg and Lf̃ := Lf + Lg.

Remark. Suppose f(·) is L-smooth and convex, and let g(x) := λ
2
∥x− x1∥22, for some

λ > 0. If we define

f̃(x) := f(x) +
λ

2
∥x− x1∥22 ,

then second order characterization we have that

∇2g(x) = λId.

This implies that g is both λ-strongly convex and λ-smooth. Let µg: = λ and Lg: = λ.
Then, by the previous lemma we have that the function f̃(x) := f(x) + λ

2
∥x− x1∥22 is

µf̃ -strongly convex and Lf̃ -smooth, where µf̃ := µg = λ and Lf̃ := L+ Lg = L+ λ.

Remark. We denote x∗ ← argminx f(x) assuming such an argmin exists, similarly
x̃∗ ← argminx f̃(x). We are going to assume such existence for reduction.

2.1 Scenario 1.

Given an algorithm with strong guarantees for smooth and strongly convex func-
tion, how to make it work for smooth convex functions with strong guarantees.

Solution. Suppose f(·) is an L-smooth convex function we want to optimize. We
can construct a function f̃(x) := f(x) + λ

2
∥x − x1∥22, for some λ > 0 and apply the

algorithm to f̃(x), where x1 is the initial point.
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Takeaway. Transform the L-smooth convex function to strongly convex by adding a
strongly convex function.

We want to choose λ such that the function value converges to f(x∗) under certain ϵ

after k steps of the algorithm (i.e. f(xk+1)− f(x∗) ≤ ϵ). First, we have

f(xk+1)− f(x∗) =

(
f̃(xk+1)−

λ

2
∥xk+1 − x1∥22

)
−
(
f̃(x∗)−

λ

2
∥x∗ − x1∥22

)
= f̃(xk+1)− f̃(x∗) +

λ

2

(
∥x∗ − x1∥22 − ∥xk+1 − x1∥22

)
.

To find a suitable λ, we could let the second term λ
2

(
∥x∗ − x1∥22 − ∥xk+1 − x1∥22

)
≤ ϵ

2
.

Then, we have
λ

2

(
∥x∗ − x1∥22 − ∥xk+1 − x1∥22

)
≤ λ

2
∥x∗ − x1∥22 ≤

λ

2
D,

where D = ∥x∗ − x1∥22 is the squared distance between x∗ and x1 in terms of the
l2-norm. We want to impose λ

2
D ≤ ϵ

2
so we can choose

λ =
ϵ

D
.

Suppose we are doing GD (1− µf̃

Lf̃
) in the algorithm. Recall that by Lemma 1 we have

µf̃ = λ =
ϵ

D

Lf̃ = L+ λ = L+
ϵ

D
.

Now, we need the first term to have

f̃(xk+1)− f̃(x∗) ≤
ϵ

2
.

We begin with

f̃(xk+1)− f̃(x∗) ≤ f̃(xk+1)− f̃(x̃∗) (since f̃(x∗) ≥ f̃(x̃∗))

≤

(
1−

µf̃

Lf̃

)k (
f̃(x1)− f̃(x̃∗)

)
(since we perform GD (1−

µf̃

Lf̃

))

=

(
1− ϵ

LD + ϵ

)k (
f̃(x1)− f̃(x̃∗)

)
.

Here we can use the linear rate inequality (1) to further simplify and get a certain k:

f̃(xk+1)− f̃(x∗) ≤
(
1− ϵ

LD + ϵ

)k (
f̃(x1)− f̃(x̃∗)

)
≤ exp

(
− ϵ

LD + ϵ
k

)(
f̃(x1)− f̃(x̃∗)

)
≤ ϵ

2
.
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We then have

k =
LD + ϵ

ϵ
log

(
2(f̃(x1)− f̃(x̃∗))

ϵ

)
= Õ

(
LD

ϵ

)
,

where Õ denotes the complexity with the log factor hidden.

2.2 Scenario 2

Given an algorithm with strong guarantees for smooth and strongly convex func-
tion, how to make it work for non-smooth and strongly convex functions with
strong guarantees.

Example: (Support vector machine):

l(x) :=
n∑

i=1

max{0, 1− yiz
T
i x}+

λ

2
∥x∥22,

where the term
∑n

i=1max{0, 1− yiz
T
i x} is non-smooth and the term λ

2
∥x∥22 is strongly

convex. Note that l(θ) := max(0, 1− θ) is referred to as “the Hinge loss”.
Solution. Suppose f(·) is an µ-strongly convex function we want to optimize. Assume,
additionally, that f(·) is L0-Lipschitz, i.e.,

|f(x)− f(y)| ≤ L0∥x− y∥2, L0 > 0.

We can construct a function f̃δ(x) := Ev∼N(0,Id)

[
f(x+ δv)

]
and apply the algorithm

to f̃δ(x).

Remark. We add Gaussian perturbation to make f(x) smooth.

We have the following properties[2]:

1. f(x) ≤ f̃δ(x) ≤ f(x) + L0δ
√
d,

2. f̃δ(x) has L0

δ
-Lipschitz gradient, i.e.,

∥∇f̃δ(x)−∇f̃δ(y)∥ ≤
L0

δ
∥x− y∥.

Given the above properties, we have

f(xk+1)− f(x∗)

= f̃δ(xk+1)− f̃δ(x∗) +
(
f(xk+1)− f̃δ(xk+1)

)
+
(
f̃δ(x∗)− f(x∗)

)
≤ f̃δ(xk+1)− f̃δ(x∗) +

(
f̃δ(x∗)− f(x∗)

)
(by left inequality of property 1)

≤ f̃δ(xk+1)− f̃δ(x∗) + L0δ
√
d. (by right inequality property 1)
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Similarly, we first need to choose δ and want to impose

L0δ
√
d ≤ ϵ

2
⇒ δ =

ϵ

2L0

√
d
.

We have µf̃δ
= µ and Lf̃δ

= L0

δ
=

2L2
0

√
d

ϵ
, thus

f̃δ(xk+1)− f̃δ(x∗) ≤ f̃δ(xk+1)− f̃δ(x̃∗) (since f̃δ(x∗) ≥ f̃δ(x̃∗))

≤

(
1−

µf̃δ

Lf̃δ

)k (
f̃δ(x1)− f̃δ(x̃∗)

)
(since we perform GD on f̃)

=

(
1− µϵ

2L2
0

√
d

)k (
f̃δ(x1)− f̃δ(x̃∗)

)
,

and we expect

f̃δ(xk)− f̃δ(x∗) ≤
ϵ

2
.

Similarly, we can use the linear rate inequality (1) and find a certain k:

k =
2L2

0

√
d

µϵ
log

(
2(f̃(x1)− f̃(x∗))

ϵ

)
= Õ

(
L2
0

√
d

µϵ

)
.

Proof of property 1. We have

f(x) = f(Ev∼N(0,Id)[x+ δv]) (by the linearity of expectation and since Ev∼N(0,Id)[v] = 0)

≤ Ev∼N(0,Id)[f(x+ δv)] (by Jensen’s inequality and convexity of f)

= f̃δ(x).

Theorem 4 (Jensen’s Inequality). Let f : J → R be a convex function, where J ⊆ Rd,
and let X be an integrable random variable taking values in J . Then, g(X) has an
expectation and

g
(
E (X)

)
≤ E

(
g (X)

)
.

2.3 Scenario 3

A convex function f(·) neither strongly convex nor smooth.
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Solution. Suppose f(·) is an L0-Lipschitz convex function we want to optimize.
We can combine above two previous scenarios, applying the algorithm to

f̂δ(x) = Ev∼N(0,Id)[f(x+ δv)] +
λ

2
∥x− x1∥22,

where we have

µf̂ = λ,

Lf̂ =
L0

δ
+ λ.

Bibliographic notes

Part of the materials for the reduction techniques are from Chapter 2.4 of [1]. For
proofs of the properties used with scenario 2, please refer to the paper by Duchi,
Bartlett and Wainwright[2].
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