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Lecture 4: Reduction

1 Review

Theorem 1. The p-strong convexity implies the p-gradient dominant condition.

Remark. The condition number k := = > 1.
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Proof. Let f be a p-strongly convex and L-smooth function. For simplicity, let us
think of u as the strong convexity constant, since from Theorem 1 we have that
p-strong convexity implies the p-gradient dominant condition. Additionally, by the
second-order characterization of strong convexity we have that

y V2 f(@)y > plyll’, Vo € C,y € R", u > 0.
By the second-order characterization of L-smoothness we have that
y V2 f(2)y < Llly|*, Vo € C,y € R".

If we choose the Euclidean norm || - || and a normalized vector y, that is y € R™ such
that |ly||o = 1, then the above inequalities imply that
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where A, and A, are the min and max eigenvalue of V2 f(x), respectively. This
suggests the following inequality
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which entails that
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Remark. exp(—z) is smooth in a bounded region x € [—c, c],c < 0.



Proof.
V2 exp(—x) = exp(—z) € [exp(—c), exp(c)] > 0,

which means there exists L > 0 such that the second-order characterization of
smoothness is satisfied. O

Remark. exp(—zx) is differentiable but not smooth for z € R.

Remark. Many optimization people call exp(—%k) linear rate (consider logarithm),
and LTD2 correspondingly sub-linear rate[? |.

Theorem 2. Assume f(-) is u-gradient dominant and L-smooth, then gradient descent
with n = % satisfies

R4 z€RA

flas) = min f(@) < (1 - %)k (f(xl) ~ min f(a:)) .

Theorem 3. Assume f(-) is convexr and L-smooth on RY, then gradient descent with
n= % satisfies
2LD?

k

where D := mkaXka — z.||e < |71 — x4||2, ze = argmin f(x).

f(Tri1) — ilgIlRI}i f(z) <

Remark. We also have the below inequality regarding to the linear rate:

(1 - %)k < exp (—%k) . (1)
2 Reduction

Our goal is to solve the general unconstrained optimization problem
min f(x)
x

We will not modify the underlying algorithm, and we will consider the following
scenarios:

1. Given an algorithm with strong guarantees for smooth and strongly convex
function, how to make it work for smooth convex functions with strong
guarantees?



2. Given an algorithm with strong guarantees for smooth and strongly convex
function, how to make it work for non-smooth and strongly convex functions
with strong guarantees?

3. Given an algorithm with strong guarantees for smooth and strongly convex
function, how to make it work for convex L¢-Lipschitz fucntions that are
neither strongly convex nor smooth?

We will study a technique called Reduction.

Lemma 1 (To be proved in HW2). Suppose f(z) is Lg-smooth convez, g(z) is
Lg-smooth and p,-strongly convex. Then, the function defined by

f(z) = f(x) +g(x)
is pj-strongly convex and L j-smooth, where pj = jiy and Ly := Lg+ L.

Remark. Suppose f(-) is L-smooth and convez, and let g(z) := 3||x — 21||3, for some
A > 0. If we define

~ A
f@%zf@%+jw—fﬂi
then second order characterization we have that
VZQ(CE) = >\[d

This implies that g is both A-strongly convex and A-smooth. Let pg: = X and Lg: = .
Then, by the previous lemma we have that the function f(z) = f(z) + 3|z — z1||3 is
pj-strongly convex and L j-smooth, where pj:=pg =X and Lj:= L+ Ly =L+ A.

Remark. We denote x, < argmin, f(x) assuming such an argmin exists, similarly

T, < argmin, f(z). We are going to assume such ezistence for reduction.

2.1 Scenario 1.

Given an algorithm with strong guarantees for smooth and strongly convex func-
tion, how to make it work for smooth convex functions with strong guarantees.

Solution. Suppose f(-) is an L-smooth convex function we want to optimize. We
can construct a function f(z) := f(z) + ||z — z1]|3, for some A > 0 and apply the
algorithm to f(z), where x; is the initial point.



Takeaway. Transform the L-smooth convex function to strongly convex by adding a

strongly convex function.

We want to choose A such that the function value converges to f(x,) under certain e
after k steps of the algorithm (i.e. f(xpy1) — f(x.) < €). First, we have

Fonen) = 2) = (Flaren) = §lone = al}) = (7o) = Sl - ]2

~ ~ A
= f(wgs1) — floa) + 5 (lze = 213 = [|zrer — 2113) -

To find a suitable A, we could let the second term 3 (|2, — 21]|3 — ||zps1 — 21[|3) < &

Then, we have

A A A
2 (e = @1l = s — 2al3) < Sl — a3 < 2D,
where D = ||z, — z1||5 is the squared distance between z, and x; in terms of the
[o-norm. We want to impose %D < % so we can choose
€
A= —.
D

Suppose we are doing GD (1 — %) in the algorithm. Recall that by Lemma 1 we have

€

€
Now, we need the first term to have

f(13k+1) - f(;z:*) < %
We begin with
fars) — < flawn) — f(@. (since f(x,) > f(%.))

k
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Here we can use the linear rate inequality to further simplify and get a certain k:

)~ Fea < (1= ) (Feew — F@)

)



We then have

e LDre (2<f<x1> - f@))) _5 (2) |

where O denotes the complexity with the log factor hidden.

2.2 Scenario 2

Given an algorithm with strong guarantees for smooth and strongly convex func-
tion, how to make it work for non-smooth and strongly convex functions with
strong guarantees.

Example: (Support vector machine):
E A
l = 01— i I — 2,
(#) = D marf0. 1 =izt + Gl

where the term Y7 maz{0,1—y;2] z} is non-smooth and the term 3 ||z||3 is strongly
convex. Note that [(0) := maxz(0,1 — @) is referred to as “the Hinge loss”.

Solution. Suppose f(+) is an p-strongly convex function we want to optimize. Assume,
additionally, that f(-) is Lo-Lipschitz, i.e.,

[f(z) = f()] < Lollz — yll2, Lo > 0.
We can construct a function fs(x) = Eoono,1,) [f(z 4 0v)] and apply the algorithm
to fs(z).
Remark. We add Gaussian perturbation to make f(x) smooth.
We have the following properties|2]:
L f(z) < fs(x) < flz) + Lo Vd,

2. f5(x) has £2-Lipschitz gradient, i.e.,
IV fstx) Vi)l < 2lle — ]
Given the above properties, we have
f(xran) — f(2s)
= folwnsr) = folws) + (o) = Folwwnn) ) + (Fotas) = f(@)
< fo(wra) — folz) + (ﬁs(x*) —f (x*)> (by left inequality of property 1)

< f5($k+1) - fé(if*) + LodVd. (by right inequality property 1)



Similarly, we first need to choose § and want to impose

LooVd< s = §=—"—
" T2 2LoVd
We have pij = pand Ly, :Tf’: QLO\[ , thus

fs(py) —

PeuY

(@ht1) T.) (since f5(w,) > fé(f*»

< fi(
( 5) Fs(z1) — f(;(j;*)) (since we perform GD on f)

2L2f> (folan) = fi@.))

and we expect

fs(zr) — fs(xs) <

DO |

Similarly, we can use the linear rate inequality and find a certain k:

L2V (2(f(a:1)€—f(:c*))> 5 <LM> |

L€ L€

Proof of property 1. We have

f(x) = f(Eyon(o,p[x + 6v]) (by the linearity of expectation and since Eqy.n(o,1,)[v] = 0)
< Eyon(o,,)f(x +6v)] (by Jensen’s inequality and convexity of f)

= f(s(fﬁ)
[

Theorem 4 (Jensen’s Inequality). Let f : J — R be a convex function, where J C R,
and let X be an integrable random variable taking values in J. Then, g(X) has an
expectation and

2.3 Scenario 3

A convex function f(-) neither strongly convex nor smooth.



Solution. Suppose f(-) is an Ly-Lipschitz convex function we want to optimize.
We can combine above two previous scenarios, applying the algorithm to

~

A
f5(@) = Boonoipf (@ + 00)] + Zllz — 13,

where we have

/j’f_)\u
Ly

Bibliographic notes

Part of the materials for the reduction techniques are from Chapter 2.4 of [I]. For
proofs of the properties used with scenario 2, please refer to the paper by Duchi,
Bartlett and Wainwright[2].
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