DSC 211 Introduction to Optimization Winter 2024 Scribe: David Tu, Can Chen

Instructor: Jun-Kun Wang
January 16, 2024

Editors/TAs: Merlin Chang, Marialena Sfyraki

Lecture 3: Convexity and Gradient Descent

1 Convexity and Gradient Dominant Condition

Theorem 1. (μ-strong convexity implies μ-gradient dominant condition): If a function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex, then it satisfies the μ-gradient dominant condition for any $x, y \in \mathbb{R}^{d}$, i.e.

$$
\|\nabla f(x)\|_{2}^{2} \geq 2 \mu\left(f(x)-\min _{x \in \mathbb{R}^{d}} f(x)\right)
$$

Proof. $\forall x, y \in \mathbb{R}^{d}$, by definition of μ-strong convexity we have

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\mu}{2}\|y-x\|_{2}^{2}
$$

Let $h(y)$ be the right-hand side of the above inequality, i.e.

$$
h(y):=f(x)+\langle\nabla f(x), y-x\rangle+\frac{\mu}{2}\|y-x\|_{2}^{2} .
$$

Since for all $x, y \in \mathbb{R}^{d}$ we have $f(y) \geq h(y)$, then the following inequality is always true

$$
\begin{equation*}
\min _{y \in \mathbb{R}^{d}} f(y) \geq \min _{y \in \mathbb{R}^{d}} h(y) . \tag{1}
\end{equation*}
$$

To find $\min _{y \in \mathbb{R}^{d}} h(y)$, we need to find where the gradient is 0 , thus

$$
\begin{aligned}
& \nabla h(y)=0 \\
\Leftrightarrow & \nabla f(x)+\mu(y-x)=0 \\
\Leftrightarrow & y=x-\frac{1}{\mu} \nabla f(x) .
\end{aligned}
$$

Now that we have the $\arg \min _{y} h(y)$, we can plug it into h to find $\min _{y \in \mathbb{R}^{d}} h(y)$ as

$$
\begin{align*}
\min _{y \in \mathbb{R}^{d}} h(y) & =f(x)+\left\langle\nabla f(x),-\frac{1}{\mu} \nabla f(x)\right\rangle+\frac{\mu}{2}\left\|\frac{1}{\mu} \nabla f(x)\right\|_{2}^{2} \tag{2}\\
& =f(x)-\frac{1}{2 \mu}\|\nabla f(x)\|_{2}^{2} .
\end{align*}
$$

Therefore, combining (1) and (2), then rearranging, we get

$$
\min _{y \in \mathbb{R}^{d}} f(y) \geq f(x)-\frac{1}{2 \mu}\|\nabla f(x)\|_{2}^{2}
$$

$$
\Leftrightarrow\|\nabla f(x)\|_{2}^{2} \geq 2 \mu\left(f(x)-\min _{x \in \mathbb{R}^{d}} f(x)\right)
$$

Thus, we have shown that f satisfies the μ-gradient dominant condition.
Note: Every stationary point of a function that satisfies gradient dominant condition is a global optimal point. That is because a stationary point x satisfies $\nabla f(x)=0$. If we plug it into the above inequality, we get

$$
0 \geq 2 \mu\left(f(x)-\min _{x \in \mathbb{R}^{d}} f(x)\right),
$$

where $\mu>0$. Additionally, since $f(x)-\min _{x \in \operatorname{dom} f} f(x) \geq 0$, by the squeeze theorem we have that $f(x)=\min _{x \in \operatorname{dom} f} f(x)$ and thus x is a global optimal point of f.

2 Dual Norm

Definition 1. (Dual Norm): For a norm $\|\cdot\|$ on \mathbb{R}^{d}, its dual norm $\|\cdot\|_{*}$ is a function $\|\cdot\|_{*}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined as

$$
\|y\|_{*}:=\sup _{x:\|x\| \leq 1}\langle y, x\rangle
$$

Fact: For the l_{p}-norm

$$
\|x\|_{p}:=\left(\sum_{i=1}^{d}|x|^{p}\right)^{\frac{1}{p}}
$$

its dual norm is the l_{q}-norm, i.e. $\|x\|_{q}$, where $\frac{1}{p}+\frac{1}{q}=1$.
Furthermore, the dual norm of the Euclidean norm (l_{2}-norm) is itself, which can be proven directly with the Cauchy-Schwartz inequality.

3 L-smoothness

Definition 2. (L-smoothness): A differentiable function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is L-smooth w.r.t. $\|\cdot\|$, if for any $x, y \in \mathbb{R}^{d}$

$$
\begin{equation*}
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}, \tag{3}
\end{equation*}
$$

where $L>0$.
Definition 3. (L-Lipschitz): A function $f: \Omega \rightarrow \mathbb{R}$ is L-Lipschitz w.r.t. $\|\cdot\|$ over Ω, if for any $x, y \in \Omega$,

$$
\begin{equation*}
|f(x)-f(y)| \leq L\|x-y\| \tag{4}
\end{equation*}
$$

where $L>0$.

Theorem 2. (L-Lipschitz gradient implies L-smoothness): Suppose $f: \mathbb{R}^{d} \rightarrow$ \mathbb{R} is differentiable. If the gradient map $\nabla f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is L-Lipschitz w.r.t. $\|\cdot\|$, i.e.

$$
\forall x, y:\|\nabla f(x)-\nabla f(y)\|_{*} \leq L\|x-y\|,
$$

then, f is L-smooth, i.e.

$$
\forall x, y: f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}
$$

Remark: If $f(\cdot)$ is convex, then the converse is also true! See e.g., [3] for the exposition.

Theorem 3. (Second-order characterization of L-smoothness) A twice differentiable function $f(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}$ is smooth w.r.t. a norm $\|\cdot\|_{2}$, if and only if

$$
y^{\top} \nabla^{2} f(x) y \leq L\|y\|_{2}^{2}, \forall x, y \in \mathbb{R}^{d} .
$$

Remark: See e.g., Section 3.5 of [[2] for the proof.

Examples of Smooth Function:

1. $\frac{1}{2} x^{2}$
2. $\log (1+\exp (-x))$

Examples of Non-smooth Function:

1. $\max \{0,1-x\}$
(Hinge-loss function is not differentiable at $x=1$)
2. $\exp (-x)$
(Only smooth in a bounded region $x \in[-c, c], c<\infty$)

4 Gradient Descent

Now let us analyze the iteration complexity of Gradient Descent:

$$
x_{k+1}=x_{k}-\eta \nabla f\left(x_{k}\right) .
$$

Theorem 4. Assume $f(\cdot)$ is μ-gradient dominant and L-smooth, then gradient descent with $\eta=\frac{1}{L}$ satisfies

$$
f\left(x_{k+1}\right)-\min _{x \in \mathbb{R}^{d}} f(x) \leq\left(1-\frac{\mu}{L}\right)^{k}\left(f\left(x_{1}\right)-\min _{x \in \mathbb{R}^{d}} f(x)\right) .
$$

Remark: $1-\theta \leq \exp (-\theta)$ implies $\left(1-\frac{\mu}{L}\right)^{k} \leq \exp \left(-\frac{\mu}{L} k\right)$
Theorem 3 is also applicable to μ-strongly convex and L-smooth functions.

Proof. We have that

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|_{2}^{2} \quad \text { (by L-smoothness) } \\
& =f\left(x_{k}\right)-\eta\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}+\frac{L \eta^{2}}{2}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \quad \text { (by the GD update rule) } \\
& =f\left(x_{k}\right)-\left(\frac{1}{L}-\frac{1}{2 L}\right)\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& =f\left(x_{k}\right)-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \\
& \leq f\left(x_{k}\right)-\frac{\mu}{L}\left(f\left(x_{k}\right)-\min _{x \in \mathbb{R}^{d}} f(x)\right) \quad \text { (by Gradient Dominant) }
\end{aligned}
$$

Subtracting $\min _{x \in \mathbb{R}^{d}} f(x)$ from both sides we get

$$
f\left(x_{k+1}\right)-\min _{x \in \mathbb{R}^{d}} f(x) \leq\left(1-\frac{\mu}{L}\right)\left(f\left(x_{k}\right)-\min _{x \in \mathbb{R}^{d}} f(x)\right) .
$$

Let $\delta_{k+1}:=f\left(x_{k}\right)-\min _{x \in \mathbb{R}^{d}} f(x)$, then

$$
\begin{aligned}
\delta_{k+1} & \leq\left(1-\frac{\mu}{L}\right) \delta_{k} \\
& \leq\left(1-\frac{\mu}{L}\right)\left(1-\frac{\mu}{L}\right) \delta_{k-1} \\
& \leq\left(1-\frac{\mu}{L}\right)\left(1-\frac{\mu}{L}\right)\left(1-\frac{\mu}{L}\right) \delta_{k-2} \\
& \leq\left(1-\frac{\mu}{L}\right)^{k} \delta_{1} .
\end{aligned}
$$

Thus,

$$
\delta_{k+1} \leq\left(1-\frac{\mu}{L}\right)^{k} \delta_{1}
$$

Fact: We have $L \geq \mu$, i.e., the condition number $\kappa:=\frac{L}{\mu} \geq 1$. To make sense of this relation, let us think of μ as μ of the μ-strong convexity (the argument when μ is that of μ-gradient dominance will be more involved). Then, on one hand, by the first-order characterization of the L-smoothness, we have

$$
\begin{equation*}
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}, \forall x, y \in \mathbb{R}^{d} . \tag{5}
\end{equation*}
$$

On the other hand, by the first-order characterization of the μ-strong convexity, we have

$$
\begin{equation*}
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|^{2}, \forall x, y \in \mathbb{R}^{d} . \tag{6}
\end{equation*}
$$

It is evident that $L \geq \mu$, otherwise the above two inequalities will contradict to each other. We can also deduce $L \geq \mu$ using the second-order characterization of the L-smoothness and the μ-strong convexity when $f(\cdot)$ is twice differentiable:

$$
L:=\max _{x \in \mathbb{R}^{d}} \lambda_{\max }\left(\nabla^{2} f(x)\right) \quad \mu:=\min _{x \in \mathbb{R}^{d}} \lambda_{\min }\left(\nabla^{2} f(x)\right)
$$

Theorem 5. Assume $f(\cdot)$ is convex and L-smooth on \mathbb{R}^{d}, then gradient descent with $\eta=\frac{1}{L}$ satisfies

$$
f\left(x_{k+1}\right)-\min _{x \in \mathbb{R}^{d}} f(x) \leq \frac{2 L D^{2}}{k}
$$

where $D:=\max _{k}\left\|x_{k}-x_{*}\right\|_{2}, x_{*}:=\arg \min f(x)$.
Remark: D can be shown to be bounded by the initial distance, i.e., $D=\left\|x_{1}-x_{*}\right\|_{2}$. Proof. From the proof of Theorem $\square \square$, we know gradient descent with the step size $\eta=\frac{1}{L}$ for L-smooth function has

$$
f\left(x_{k+1}\right)-f\left(x_{k}\right) \leq-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2}
$$

Denote,

$$
f\left(x_{*}\right):=\min _{x \in \mathbb{R}^{d}} f(x) \quad \delta_{k+1}:=f\left(x_{k+1}\right)-f\left(x_{*}\right)
$$

Then,

$$
\begin{equation*}
\delta_{k+1}-\delta_{k} \leq-\frac{1}{2 L}\left\|\nabla f\left(x_{k}\right)\right\|_{2}^{2} \tag{7}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
\delta_{k} & =f\left(x_{k}\right)-f\left(x_{*}\right) \\
& \leq\left\langle\nabla f\left(x_{k}\right), x_{k}-x_{*}\right\rangle \\
& \leq\left\|\nabla f\left(x_{k}\right)\right\|_{2}\left\|x_{k}-x_{*}\right\|_{2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\|\nabla f\left(x_{k}\right)\right\|_{2} \geq \frac{\delta_{k}}{\left\|x_{k}-x_{*}\right\|_{2}} \tag{8}
\end{equation*}
$$

Combining ($\mathbb{\square}$) and (\mathbb{Z}), we get

$$
\begin{aligned}
\delta_{k+1}-\delta_{k} & \leq-\frac{1}{2 L} \frac{\delta_{k}^{2}}{\left\|x_{k}-x_{*}\right\|_{2}^{2}} \\
\Leftrightarrow \frac{\delta_{k}-\delta_{k+1}}{\delta_{k}} & \geq \frac{1}{2 L} \frac{\delta_{k}}{\left\|x_{k}-x_{*}\right\|_{2}^{2}} \geq \frac{\delta_{k}}{2 L D^{2}}
\end{aligned}
$$

Therefore,

$$
\frac{1}{\delta_{k+1}}-\frac{1}{\delta_{k}}=\frac{\delta_{k}-\delta_{k+1}}{\delta_{k} \delta_{k+1}} \geq \frac{\delta_{k}}{2 L D^{2} \cdot \delta_{k+1}}
$$

Optimality gap is non-increasing ((\mathbb{Z}), thus

$$
\delta_{k} \geq \delta_{k+1} \Rightarrow \frac{\delta_{k}}{\delta_{k+1}} \geq 1
$$

Hence,

$$
\begin{gathered}
\frac{1}{\delta_{k+1}}-\frac{1}{\delta_{k}} \geq \frac{\delta_{k}}{2 L D^{2} \cdot \delta_{k+1}} \geq \frac{1}{2 L D^{2}} \\
\frac{1}{\delta_{k+1}}-\frac{1}{\delta_{k}} \geq \frac{1}{2 L D^{2}} \\
\frac{1}{\delta_{k}}-\frac{1}{\delta_{k-1}} \\
\geq \frac{1}{2 L D^{2}} \\
\frac{1}{\delta_{k-1}}-\frac{1}{\delta_{k-2}}
\end{gathered} \geq \frac{1}{2 L D^{2}}, ~ \begin{gathered}
\vdots \\
\frac{1}{\delta_{2}}-\frac{1}{\delta_{1}}
\end{gathered} \geq \frac{1}{2 L D^{2}}
$$

By telescoping sum,

$$
\begin{equation*}
\frac{1}{\delta_{k+1}}-\frac{1}{\delta_{1}} \geq \frac{k}{2 L D^{2}} \tag{9}
\end{equation*}
$$

What is δ_{1} ?

$$
\begin{align*}
\delta_{1} & =f\left(x_{1}\right)-f\left(x_{*}\right) \\
& \leq\left\langle\nabla f\left(x_{1}\right), x_{1}-x_{*}\right\rangle \tag{byConvexity}\\
& \leq\left\|\nabla f\left(x_{1}\right)\right\|_{2}\left\|x_{1}-x_{*}\right\|_{2} \\
& =\left\|\nabla f\left(x_{1}\right)-\nabla f\left(x_{*}\right)\right\|_{2}\left\|x_{1}-x_{*}\right\|_{2} \\
& \leq L\left\|x_{1}-x_{*}\right\|_{2}^{2} \\
& \leq L D^{2} \\
& \Rightarrow \frac{1}{\delta_{1}} \geq \frac{1}{L D^{2}} \tag{10}
\end{align*}
$$ (by Cauchy-Schwartz inequality)

$\left(\nabla f\left(x_{*}\right)=0\right)$
(by L-Lipschitz)

Combining (피) and (떼) , we get

$$
\begin{aligned}
\frac{1}{\delta_{k+1}} & \geq \frac{k}{2 L D^{2}}+\frac{1}{\delta_{1}} \\
& \geq \frac{k}{2 L D^{2}}+\frac{1}{L D^{2}} \\
& =\frac{k+2}{2 L D^{2}} \\
\Leftrightarrow & \delta_{k+1} \leq \frac{2 L D^{2}}{k+2} \\
\Rightarrow & \delta_{k+1} \leq \frac{2 L D^{2}}{k}
\end{aligned}
$$

Bibliographic notes

Regarding the smoothness and the gradient Lipschitzness, see Chapter 3 of [2] and [3]. For the iteration complexity of gradient descent, Chapter 6 of [I] provides a nice exposition.

References

[1] Nisheeth K. Vishnoi. Algorithms for Convex Optimization Cambridge University Press, 2021
[2] Aaron Sidford Optimization Algorithms 2023 https://drive.google.com/ file/d/1BfMkt2glaZpJGwg7gwsJw9T_XxH3o8gx/view
[3] Xingyu Zhou On the Fenchel Duality between Strong Convexity and Lipschitz Continuous Gradient arXiv:1803.06573, 2018

