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Lecture 3: Convexity and Gradient Descent

1 Convexity and Gradient Dominant Condition
Theorem 1. (µ-strong convexity implies µ-gradient dominant condition):
If a function f : Rd → R is µ-strongly convex, then it satisfies the µ-gradient dominant
condition for any x, y ∈ Rd, i.e.

∥∇f(x)∥22 ≥ 2µ(f(x)− min
x∈Rd

f(x))

Proof. ∀x, y ∈ Rd, by definition of µ-strong convexity we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥22.

Let h(y) be the right-hand side of the above inequality, i.e.

h(y) := f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥22.

Since for all x, y ∈ Rd we have f(y) ≥ h(y), then the following inequality is always
true

min
y∈Rd

f(y) ≥ min
y∈Rd

h(y). (1)

To find min
y∈Rd

h(y), we need to find where the gradient is 0, thus

∇h(y) = 0

⇔ ∇f(x) + µ(y − x) = 0

⇔ y = x− 1

µ
∇f(x).

Now that we have the argminy h(y), we can plug it into h to find miny∈Rd h(y) as

min
y∈Rd

h(y) = f(x) + ⟨∇f(x),− 1

µ
∇f(x)⟩+ µ

2
∥ 1
µ
∇f(x)∥22

= f(x)− 1

2µ
∥∇f(x)∥22.

(2)

Therefore, combining (1) and (2), then rearranging, we get

min
y∈Rd

f(y) ≥ f(x)− 1

2µ
∥∇f(x)∥22
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⇔ ∥∇f(x)∥22 ≥ 2µ(f(x)− min
x∈Rd

f(x)).

Thus, we have shown that f satisfies the µ-gradient dominant condition.

Note: Every stationary point of a function that satisfies gradient dominant condition
is a global optimal point. That is because a stationary point x satisfies ∇f(x) = 0.
If we plug it into the above inequality, we get

0 ≥ 2µ(f(x)− min
x∈Rd

f(x)),

where µ > 0. Additionally, since f(x)−minx∈domf f(x) ≥ 0 , by the squeeze theorem
we have that f(x) = minx∈domf f(x) and thus x is a global optimal point of f .

2 Dual Norm
Definition 1. (Dual Norm): For a norm ∥·∥ on Rd, its dual norm ∥·∥∗ is a function
∥·∥∗ : Rd → R defined as

∥y∥∗ := sup
x:∥x∥≤1

⟨y, x⟩

Fact: For the lp-norm

∥x∥p := (
d∑

i=1

|x|p)
1
p

its dual norm is the lq-norm, i.e. ∥x∥q, where 1
p
+ 1

q
= 1.

Furthermore, the dual norm of the Euclidean norm (l2-norm) is itself, which can be
proven directly with the Cauchy-Schwartz inequality.

3 L-smoothness
Definition 2. (L-smoothness): A differentiable function f : Rd → R is L-smooth
w.r.t. ∥·∥, if for any x, y ∈ Rd

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2, (3)

where L > 0.

Definition 3. (L-Lipschitz): A function f : Ω → R is L-Lipschitz w.r.t. ∥ · ∥ over
Ω, if for any x, y ∈ Ω,

|f(x)− f(y)| ≤ L∥x− y∥, (4)

where L > 0.

2



Theorem 2. (L-Lipschitz gradient implies L-smoothness): Suppose f : Rd →
R is differentiable. If the gradient map ∇f : Rd → Rd is L-Lipschitz w.r.t. ∥·∥, i.e.

∀x, y : ∥∇f(x)−∇f(y)∥∗ ≤ L∥x− y∥,

then, f is L-smooth, i.e.

∀x, y : f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2

Remark: If f(·) is convex, then the converse is also true! See e.g., [3] for the exposi-
tion.

Theorem 3. (Second-order characterization of L-smoothness) A twice dif-
ferentiable function f(·) : Rd → R is smooth w.r.t. a norm ∥ · ∥2, if and only if

y⊤∇2f(x)y ≤ L∥y∥22, ∀x, y ∈ Rd.

Remark: See e.g., Section 3.5 of [2] for the proof.

Examples of Smooth Function:

1. 1
2
x2

2. log(1 + exp(−x))

Examples of Non-smooth Function:

1. max{0, 1− x} (Hinge-loss function is not differentiable at x = 1)

2. exp(−x) (Only smooth in a bounded region x ∈ [−c, c], c < ∞)

4 Gradient Descent
Now let us analyze the iteration complexity of Gradient Descent:

xk+1 = xk − η∇f(xk).

Theorem 4. Assume f(·) is µ-gradient dominant and L-smooth, then gradient de-
scent with η = 1

L
satisfies

f(xk+1)− min
x∈Rd

f(x) ≤
(
1− µ

L

)k (
f(x1)− min

x∈Rd
f(x)

)
.
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Remark: 1− θ ≤ exp(−θ) implies
(
1− µ

L

)k ≤ exp
(
− µ

L
k
)

Theorem 3 is also applicable to µ-strongly convex and L-smooth functions.

Proof. We have that

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥22 (by L-smoothness)

= f(xk)− η∥∇f(xk)∥22 +
Lη2

2
∥∇f(xk)∥22 (by the GD update rule)

= f(xk)−
(
1

L
− 1

2L

)
∥∇f(xk)∥22

= f(xk)−
1

2L
∥∇f(xk)∥22

≤ f(xk)−
µ

L

(
f(xk)− min

x∈Rd
f(x)

)
(by Gradient Dominant)

Subtracting min
x∈Rd

f(x) from both sides we get

f(xk+1)− min
x∈Rd

f(x) ≤
(
1− µ

L

)(
f(xk)− min

x∈Rd
f(x)

)
.

Let δk+1 := f(xk)− min
x∈Rd

f(x), then

δk+1 ≤
(
1− µ

L

)
δk

≤
(
1− µ

L

)(
1− µ

L

)
δk−1

≤
(
1− µ

L

)(
1− µ

L

)(
1− µ

L

)
δk−2

≤
(
1− µ

L

)k

δ1.

Thus,

δk+1 ≤
(
1− µ

L

)k

δ1.
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Fact: We have L ≥ µ, i.e., the condition number κ := L
µ
≥ 1. To make sense of

this relation, let us think of µ as µ of the µ-strong convexity (the argument when µ

is that of µ-gradient dominance will be more involved). Then, on one hand, by the
first-order characterization of the L-smoothness, we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2, ∀x, y ∈ Rd. (5)

On the other hand, by the first-order characterization of the µ-strong convexity, we
have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2, ∀x, y ∈ Rd. (6)

It is evident that L ≥ µ, otherwise the above two inequalities will contradict to each
other. We can also deduce L ≥ µ using the second-order characterization of the
L-smoothness and the µ-strong convexity when f(·) is twice differentiable:

L := max
x∈Rd

λmax(∇2f(x)) µ := min
x∈Rd

λmin(∇2f(x))

Theorem 5. Assume f(·) is convex and L-smooth on Rd, then gradient descent with
η = 1

L
satisfies

f(xk+1)− min
x∈Rd

f(x) ≤ 2LD2

k

where D := max
k

∥xk − x∗∥2, x∗ := argmin f(x).

Remark: D can be shown to be bounded by the initial distance, i.e., D = ∥x1−x∗∥2.

Proof. From the proof of Theorem 4, we know gradient descent with the step size
η = 1

L
for L-smooth function has

f(xk+1)− f(xk) ≤ − 1

2L
∥∇f(xk)∥22.

Denote,

f(x∗) := min
x∈Rd

f(x) δk+1 := f(xk+1)− f(x∗)

Then,

δk+1 − δk ≤ − 1

2L
∥∇f(xk)∥22. (7)

Moreover,

δk = f(xk)− f(x∗)

≤ ⟨∇f(xk), xk − x∗⟩ (by Convexity)
≤ ∥∇f(xk)∥2∥xk − x∗∥2 (by Cauchy-Schwartz inequality)
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Hence,

∥∇f(xk)∥2 ≥
δk

∥xk − x∗∥2
. (8)

Combining (7) and (8), we get

δk+1 − δk ≤ − 1

2L

δk
2

∥xk − x∗∥22

⇔ δk − δk+1

δk
≥ 1

2L

δk
∥xk − x∗∥22

≥ δk
2LD2

Therefore,

1

δk+1

− 1

δk
=

δk − δk+1

δkδk+1

≥ δk
2LD2 · δk+1

.

Optimality gap is non-increasing (7), thus

δk ≥ δk+1 ⇒
δk
δk+1

≥ 1.

Hence,

1

δk+1

− 1

δk
≥ δk

2LD2 · δk+1

≥ 1

2LD2

1

δk+1

− 1

δk
≥ 1

2LD2

1

δk
− 1

δk−1

≥ 1

2LD2

1

δk−1

− 1

δk−2

≥ 1

2LD2

...
1

δ2
− 1

δ1
≥ 1

2LD2

By telescoping sum,

1

δk+1

− 1

δ1
≥ k

2LD2
(9)
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What is δ1?

δ1 = f(x1)− f(x∗)

≤ ⟨∇f(x1), x1 − x∗⟩ (by Convexity)
≤ ∥∇f(x1)∥2∥x1 − x∗∥2 (by Cauchy-Schwartz inequality)
= ∥∇f(x1)−∇f(x∗)∥2∥x1 − x∗∥2 (∇f(x∗) = 0)
≤ L∥x1 − x∗∥22 (by L-Lipschitz)
≤ LD2

⇒ 1

δ1
≥ 1

LD2
(10)

Combining (9) and (10), we get

1

δk+1

≥ k

2LD2
+

1

δ1

≥ k

2LD2
+

1

LD2

=
k + 2

2LD2

⇔ δk+1 ≤
2LD2

k + 2

⇒ δk+1 ≤
2LD2

k

Bibliographic notes
Regarding the smoothness and the gradient Lipschitzness, see Chapter 3 of [2] and
[3]. For the iteration complexity of gradient descent, Chapter 6 of [1] provides a nice
exposition.
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