DSC 211 Introduction to Optimization Winter 2024 Instructor: Jun-Kun Wang Scribe: David Tu, Can Chen January 16, 2024 Editors/TAs: Merlin Chang, Marialena Sfyraki

Lecture 3: Convexity and Gradient Descent

1 Convexity and Gradient Dominant Condition

Theorem 1. (μ -strong convexity implies μ -gradient dominant condition): If a function $f : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex, then it satisfies the μ -gradient dominant condition for any $x, y \in \mathbb{R}^d$, i.e.

$$\|\nabla f(x)\|_2^2 \ge 2\mu(f(x) - \min_{x \in \mathbb{R}^d} f(x))$$

Proof. $\forall x, y \in \mathbb{R}^d$, by definition of μ -strong convexity we have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||_2^2.$$

Let h(y) be the right-hand side of the above inequality, i.e.

$$h(y) := f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||_2^2.$$

Since for all $x, y \in \mathbb{R}^d$ we have $f(y) \ge h(y)$, then the following inequality is always true

$$\min_{y \in \mathbb{R}^d} f(y) \ge \min_{y \in \mathbb{R}^d} h(y).$$
(1)

To find $\min_{y \in \mathbb{R}^d} h(y)$, we need to find where the gradient is 0, thus

$$\begin{aligned} \nabla h(y) &= 0 \\ \Leftrightarrow \nabla f(x) + \mu(y-x) \\ \Leftrightarrow y &= x - \frac{1}{\mu} \nabla f(x). \end{aligned}$$

Now that we have the $\arg\min_y h(y)$, we can plug it into h to find $\min_{y \in \mathbb{R}^d} h(y)$ as

$$\min_{y \in \mathbb{R}^d} h(y) = f(x) + \langle \nabla f(x), -\frac{1}{\mu} \nabla f(x) \rangle + \frac{\mu}{2} \| \frac{1}{\mu} \nabla f(x) \|_2^2$$

$$= f(x) - \frac{1}{2\mu} \| \nabla f(x) \|_2^2.$$
(2)

= 0

Therefore, combining (1) and (2), then rearranging, we get

$$\min_{y\in\mathbb{R}^d}f(y)\geq f(x)-\frac{1}{2\mu}\|\nabla f(x)\|_2^2$$

$$\Leftrightarrow \|\nabla f(x)\|_2^2 \ge 2\mu(f(x) - \min_{x \in \mathbb{R}^d} f(x)).$$

Thus, we have shown that f satisfies the μ -gradient dominant condition.

Note: Every stationary point of a function that satisfies gradient dominant condition is a global optimal point. That is because a stationary point x satisfies $\nabla f(x) = 0$. If we plug it into the above inequality, we get

$$0 \ge 2\mu(f(x) - \min_{x \in \mathbb{R}^d} f(x)),$$

where $\mu > 0$. Additionally, since $f(x) - \min_{x \in \mathbf{dom} f} f(x) \ge 0$, by the squeeze theorem we have that $f(x) = \min_{x \in \mathbf{dom} f} f(x)$ and thus x is a global optimal point of f.

2 Dual Norm

Definition 1. (Dual Norm): For a norm $\|\cdot\|$ on \mathbb{R}^d , its dual norm $\|\cdot\|_*$ is a function $\|\cdot\|_* : \mathbb{R}^d \to \mathbb{R}$ defined as

$$\|y\|_* := \sup_{x:\|x\| \le 1} \langle y, x \rangle$$

Fact: For the l_p -norm

$$||x||_p := (\sum_{i=1}^d |x|^p)^{\frac{1}{p}}$$

its dual norm is the l_q -norm, i.e. $||x||_q$, where $\frac{1}{p} + \frac{1}{q} = 1$. Furthermore, the dual norm of the Euclidean norm (l_2 -norm) is itself, which can be proven directly with the Cauchy-Schwartz inequality.

3 L-smoothness

Definition 2. (*L-smoothness*): A differentiable function $f : \mathbb{R}^d \to \mathbb{R}$ is *L-smooth* w.r.t. $\|\cdot\|$, if for any $x, y \in \mathbb{R}^d$

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2,$$
 (3)

where L > 0.

Definition 3. *(L-Lipschitz):* A function $f : \Omega \to \mathbb{R}$ is L-Lipschitz w.r.t. $\|\cdot\|$ over Ω , if for any $x, y \in \Omega$,

$$|f(x) - f(y)| \le L ||x - y||, \tag{4}$$

where L > 0.

Theorem 2. (*L*-Lipschitz gradient implies *L*-smoothness): Suppose $f : \mathbb{R}^d \to \mathbb{R}$ is differentiable. If the gradient map $\nabla f : \mathbb{R}^d \to \mathbb{R}^d$ is *L*-Lipschitz w.r.t. $\|\cdot\|$, i.e.

$$\forall x, y : \|\nabla f(x) - \nabla f(y)\|_* \le L \|x - y\|,$$

then, f is L-smooth, i.e.

$$\forall x, y : f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2$$

Remark: If $f(\cdot)$ is convex, then the converse is also true! See e.g., [3] for the exposition.

Theorem 3. (Second-order characterization of L-smoothness) A twice differentiable function $f(\cdot) : \mathbb{R}^d \to \mathbb{R}$ is smooth w.r.t. a norm $\|\cdot\|_2$, if and only if

$$y^{\top} \nabla^2 f(x) y \le L \|y\|_2^2, \ \forall x, y \in \mathbb{R}^d.$$

Remark: See e.g., Section 3.5 of [2] for the proof.

Examples of Smooth Function:

- 1. $\frac{1}{2}x^2$
- 2. $\log(1 + exp(-x))$

Examples of Non-smooth Function:

1. $\max\{0, 1 - x\}$ (Hinge-loss function is not differentiable at x = 1)2. exp(-x)(Only smooth in a bounded region $x \in [-c, c], c < \infty$)

4 Gradient Descent

Now let us analyze the iteration complexity of Gradient Descent:

$$x_{k+1} = x_k - \eta \nabla f(x_k).$$

Theorem 4. Assume $f(\cdot)$ is μ -gradient dominant and L-smooth, then gradient descent with $\eta = \frac{1}{L}$ satisfies

$$f(x_{k+1}) - \min_{x \in \mathbb{R}^d} f(x) \le \left(1 - \frac{\mu}{L}\right)^k \left(f(x_1) - \min_{x \in \mathbb{R}^d} f(x)\right).$$

Remark: $1 - \theta \le exp(-\theta)$ implies $\left(1 - \frac{\mu}{L}\right)^k \le exp\left(-\frac{\mu}{L}k\right)$

Theorem 3 is also applicable to μ -strongly convex and L-smooth functions.

Proof. We have that

$$f(x_{k+1}) \leq f(x_k) + \langle \nabla f(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||_2^2 \quad \text{(by L-smoothness)} \\ = f(x_k) - \eta ||\nabla f(x_k)||_2^2 + \frac{L\eta^2}{2} ||\nabla f(x_k)||_2^2 \quad \text{(by the GD update rule)} \\ = f(x_k) - \left(\frac{1}{L} - \frac{1}{2L}\right) ||\nabla f(x_k)||_2^2 \\ = f(x_k) - \frac{1}{2L} ||\nabla f(x_k)||_2^2 \\ \leq f(x_k) - \frac{\mu}{L} \left(f(x_k) - \min_{x \in \mathbb{R}^d} f(x)\right) \quad \text{(by Gradient Dominant)} \end{aligned}$$

Subtracting $\min_{x \in \mathbb{R}^d} f(x)$ from both sides we get

$$f(x_{k+1}) - \min_{x \in \mathbb{R}^d} f(x) \le \left(1 - \frac{\mu}{L}\right) \left(f(x_k) - \min_{x \in \mathbb{R}^d} f(x)\right).$$

Let $\delta_{k+1} := f(x_k) - \min_{x \in \mathbb{R}^d} f(x)$, then

$$\delta_{k+1} \leq \left(1 - \frac{\mu}{L}\right) \delta_k$$

$$\leq \left(1 - \frac{\mu}{L}\right) \left(1 - \frac{\mu}{L}\right) \delta_{k-1}$$

$$\leq \left(1 - \frac{\mu}{L}\right) \left(1 - \frac{\mu}{L}\right) \left(1 - \frac{\mu}{L}\right) \delta_{k-2}$$

$$\leq \left(1 - \frac{\mu}{L}\right)^k \delta_1.$$

Thus,

$$\delta_{k+1} \le \left(1 - \frac{\mu}{L}\right)^k \delta_1.$$

r.		7
н		
н		

Fact: We have $L \ge \mu$, i.e., the condition number $\kappa := \frac{L}{\mu} \ge 1$. To make sense of this relation, let us think of μ as μ of the μ -strong convexity (the argument when μ is that of μ -gradient dominance will be more involved). Then, on one hand, by the first-order characterization of the *L*-smoothness, we have

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2, \, \forall x, y \in \mathbb{R}^d.$$
(5)

On the other hand, by the first-order characterization of the μ -strong convexity, we have

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2, \, \forall x, y \in \mathbb{R}^d.$$
(6)

It is evident that $L \ge \mu$, otherwise the above two inequalities will contradict to each other. We can also deduce $L \ge \mu$ using the second-order characterization of the *L*-smoothness and the μ -strong convexity when $f(\cdot)$ is twice differentiable:

$$L := \max_{x \in \mathbb{R}^d} \lambda_{max}(\nabla^2 f(x)) \qquad \mu := \min_{x \in \mathbb{R}^d} \lambda_{min}(\nabla^2 f(x))$$

Theorem 5. Assume $f(\cdot)$ is convex and L-smooth on \mathbb{R}^d , then gradient descent with $\eta = \frac{1}{L}$ satisfies

$$f(x_{k+1}) - \min_{x \in \mathbb{R}^d} f(x) \le \frac{2LD^2}{k}$$

where $D := \max_{k} ||x_k - x_*||_2, x_* := \arg\min f(x).$

Remark: D can be shown to be bounded by the initial distance, i.e., $D = ||x_1 - x_*||_2$. *Proof.* From the proof of Theorem 4, we know gradient descent with the step size $\eta = \frac{1}{L}$ for L-smooth function has

$$f(x_{k+1}) - f(x_k) \le -\frac{1}{2L} \|\nabla f(x_k)\|_2^2$$

Denote,

$$f(x_*) := \min_{x \in \mathbb{R}^d} f(x) \qquad \delta_{k+1} := f(x_{k+1}) - f(x_*)$$

Then,

$$\delta_{k+1} - \delta_k \le -\frac{1}{2L} \|\nabla f(x_k)\|_2^2.$$
(7)

Moreover,

$$\delta_{k} = f(x_{k}) - f(x_{*})$$

$$\leq \langle \nabla f(x_{k}), x_{k} - x_{*} \rangle \qquad (by Convexity)$$

$$\leq \|\nabla f(x_{k})\|_{2} \|x_{k} - x_{*}\|_{2} \qquad (by Cauchy-Schwartz inequality)$$

Hence,

$$\|\nabla f(x_k)\|_2 \ge \frac{\delta_k}{\|x_k - x_*\|_2}.$$
(8)

Combining (7) and (8), we get

$$\delta_{k+1} - \delta_k \le -\frac{1}{2L} \frac{\delta_k^2}{\|x_k - x_*\|_2^2}$$
$$\Leftrightarrow \frac{\delta_k - \delta_{k+1}}{\delta_k} \ge \frac{1}{2L} \frac{\delta_k}{\|x_k - x_*\|_2^2} \ge \frac{\delta_k}{2LD^2}$$

Therefore,

$$\frac{1}{\delta_{k+1}} - \frac{1}{\delta_k} = \frac{\delta_k - \delta_{k+1}}{\delta_k \delta_{k+1}} \geq \frac{\delta_k}{2LD^2 \cdot \delta_{k+1}}.$$

Optimality gap is non-increasing (7), thus

$$\delta_k \ge \delta_{k+1} \Rightarrow \frac{\delta_k}{\delta_{k+1}} \ge 1.$$

Hence,

$$\begin{aligned} \frac{1}{\delta_{k+1}} - \frac{1}{\delta_k} &\geq \frac{\delta_k}{2LD^2 \cdot \delta_{k+1}} \geq \frac{1}{2LD^2} \\ & \frac{1}{\delta_{k+1}} - \frac{1}{\delta_k} \geq \frac{1}{2LD^2} \\ & \frac{1}{\delta_k} - \frac{1}{\delta_{k-1}} \geq \frac{1}{2LD^2} \\ & \frac{1}{\delta_{k-1}} - \frac{1}{\delta_{k-2}} \geq \frac{1}{2LD^2} \\ & \vdots \\ & \frac{1}{\delta_2} - \frac{1}{\delta_1} \geq \frac{1}{2LD^2} \end{aligned}$$

By telescoping sum,

$$\frac{1}{\delta_{k+1}} - \frac{1}{\delta_1} \ge \frac{k}{2LD^2} \tag{9}$$

What is δ_1 ?

$$\delta_{1} = f(x_{1}) - f(x_{*})$$

$$\leq \langle \nabla f(x_{1}), x_{1} - x_{*} \rangle \qquad \text{(by Convexity)}$$

$$\leq \|\nabla f(x_{1})\|_{2} \|x_{1} - x_{*}\|_{2} \qquad \text{(by Cauchy-Schwartz inequality)}$$

$$= \|\nabla f(x_{1}) - \nabla f(x_{*})\|_{2} \|x_{1} - x_{*}\|_{2} \qquad (\nabla f(x_{*}) = 0)$$

$$\leq L \|x_{1} - x_{*}\|_{2}^{2} \qquad \text{(by L-Lipschitz)}$$

$$\leq LD^{2}$$

$$\Rightarrow \frac{1}{\delta_1} \ge \frac{1}{LD^2} \tag{10}$$

Combining (9) and (10), we get

$$\frac{1}{\delta_{k+1}} \ge \frac{k}{2LD^2} + \frac{1}{\delta_1}$$
$$\ge \frac{k}{2LD^2} + \frac{1}{LD^2}$$
$$= \frac{k+2}{2LD^2}$$
$$\Leftrightarrow \delta_{k+1} \le \frac{2LD^2}{k+2}$$
$$\Rightarrow \delta_{k+1} \le \frac{2LD^2}{k}$$

	٦	
	1	
L	_	

Bibliographic notes

Regarding the smoothness and the gradient Lipschitzness, see Chapter 3 of [2] and [3]. For the iteration complexity of gradient descent, Chapter 6 of [1] provides a nice exposition.

References

 Nisheeth K. Vishnoi. Algorithms for Convex Optimization Cambridge University Press, 2021

- [2] Aaron Sidford Optimization Algorithms 2023 https://drive.google.com/ file/d/1BfMkt2glaZpJGwg7gwsJw9T_XxH3o8gx/view
- [3] Xingyu Zhou On the Fenchel Duality between Strong Convexity and Lipschitz Continuous Gradient arXiv:1803.06573, 2018