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Lecture 3: Convexity and Gradient Descent

1 Convexity and Gradient Dominant Condition

Theorem 1. (u-strong convexity implies p-gradient dominant condition):
If a function f : R — R is p-strongly conves, then it satisfies the u-gradient dominant
condition for any x,y € RY, i.e.

IV f(@)]lz = 2u(f(x) — min f())

z€R4

Proof. Vx,y € R?, by definition of p-strong convexity we have
) = f(@) + (Vf().y =) + Slly = all3.
Let h(y) be the right-hand side of the above inequality, i.e.
hy) = f(@) + (Vf(2),y — )+ Sy - ol

Since for all 7, € R? we have f(y) > h(y), then the following inequality is always

true

min fly) = min h(y). (1)

To find min h(y), we need to find where the gradient is 0, thus
yeR

Now that we have the arg min, h(y), we can plug it into h to find min,cga h(y) as

i h(y) = f(2) + (Y (), =1 V1)) + 51V (@)
yeR , 2 K (2)

= f(z) - ZHVf(iE)Hg-
Therefore, combining (1) and (2), then rearranging, we get

wmin f(y) > f(z) — iuww%

yeRd



& [Vf(@)3 = 2u(f(x) — min f(z)).

z€R4

Thus, we have shown that f satisfies the p-gradient dominant condition. O]

Note: Every stationary point of a function that satisfies gradient dominant condition
is a global optimal point. That is because a stationary point x satisfies V f(z) = 0.
If we plug it into the above inequality, we get

0> 2u(f(z) — min f(z)),

xER4

where p > 0. Additionally, since f(x)—mingedoms f() > 0, by the squeeze theorem
we have that f(z) = mingedomys f(2) and thus z is a global optimal point of f.

2 Dwual Norm

Definition 1. (Dual Norm): For a norm ||-|| on RY, its dual norm ||-||. is a function
-]« : R — R defined as

lyll« == sup (y,z)

|zl <1

Fact: For the [,-norm

d 1
lzllp = (Y )
i=1

its dual norm is the l,-norm, i.e. ||z, where > + o =1.
Furthermore, the dual norm of the Euclidean norm (ly-norm) is itself, which can be
proven directly with the Cauchy-Schwartz inequality.

3 L-smoothness

Definition 2. (L-smoothness): A differentiable function f : RY — R is L-smooth
w.r.t. |||, if for any z,y € R?

F(w) < £@) +{VF(@),y 2} + oy Q

where L > 0.

Definition 3. (L-Lipschitz): A function f:Q — R is L-Lipschitz w.r.t. || - | over
Q, if for any x,y € 2,
|[f(z) = f(y)] < Lllz =yl (4)

where L > 0.



Theorem 2. (L-Lipschitz gradient implies L-smoothness): Suppose f : R? —
R is differentiable. If the gradient map Vf : R? — RY is L-Lipschitz w.r.t. ||-||, i.e.

Va,y [V f(z) = V)l < Lz -yl

then, f is L-smooth, i.e.

Vey: f(9) < F(@) + (VT @)y — ) + 2y —

Remark: If f(-) is convex, then the converse is also true! See e.g., [3] for the exposi-
tion.

Theorem 3. (Second-order characterization of L-smoothness) A twice dif-
ferentiable function f(-) : RY — R is smooth w.r.t. a norm || - |2, if and only if

y V2 f(z)y < Llly|3, Vz,y € R

Remark: See e.g., Section 3.5 of [?] for the proof.

Examples of Smooth Function:

2

1. =z

1

2
2. log(1 + exp(—x))

Examples of Non-smooth Function:

1. max{0,1 —z} (Hinge-loss function is not differentiable at = 1)

2. exp(—x) (Only smooth in a bounded region = € [—c¢, ¢, c < 00)

4 Gradient Descent

Now let us analyze the iteration complexity of Gradient Descent:

Th+1 = Tk — T}Vf(xk)‘

Theorem 4. Assume f(-) is p-gradient dominant and L-smooth, then gradient de-

scent with n = % satisfies

Fpar) — min £(z) < (1 - %)k (fw ~ min f(fv)> .

zcRd reRd



Remark: 1 — 0 < exp(—0) implies (1 — %)k < exp (—%k)

Theorem 3 is also applicable to p-strongly convex and L-smooth functions.

Proof. We have that

L
f(xrgr) < flan) +(Vf(or), Trgr — 2) + §||93k+1 — ]| (by L-smoothness)

‘L 2
= (@) =l V@3 + S5-IV F@0l3 (by the GD update rule)

=t~ (7 - 57 ) IVF@0lB

= () — 57 IV A3

< flag) — " <f(ack) — min f(x)) (by Gradient Dominant)

L z€R4

Subtracting mig f(z) from both sides we get
zeR

fowen) ~min /o) < (1= 2 () - min 1))

zeR4

Let Og41 := f(zx) — min f(z), then
z€RM

Sri1 < (1 = %) 5
<(5) (1)
<(-5) (=) (-5
<(p) e

Thus,



Fact: We have L > pu, i.e., the condition number s = ﬁ > 1. To make sense of
this relation, let us think of p as u of the p-strong convexity (the argument when p
is that of p-gradient dominance will be more involved). Then, on one hand, by the
first-order characterization of the L-smoothness, we have

F() < F@) +{VF@)y—2) + 2y — ol Yoy € R o)

On the other hand, by the first-order characterization of the p-strong convexity, we
have

L
Fy) = f(@) +(Vf(2)y —2) + S lly — =[*, Vo y € RY. (6)
It is evident that L > pu, otherwise the above two inequalities will contradict to each
other. We can also deduce L > pu using the second-order characterization of the
L-smoothness and the p-strong convexity when f(-) is twice differentiable:

L= max Anar (V2 (7)) o i= min A (V2 /()

z€R4

Theorem 5. Assume f(-) is convez and L-smooth on R?, then gradient descent with

1

n = ¢ satisfies

2L D2
f(@per) — min f(z) < —

where D := mkaXka — Zy||2, T, := argmin f(x).
Remark: D can be shown to be bounded by the initial distance, i.e., D = ||z — 2|2

Proof. From the proof of Theorem B, we know gradient descent with the step size
n= % for L-smooth function has

Flaen) = o) < IV F) 3
Denote,
fle)=min f(z)  Opr = flzre) = f2)
Then,
Sivr = b < — 5 IV () (7
Moreover,

ok = flax) — f(zs)
< (Vf(xp), xx — ) (by Convexity)
< |V f(xp)l2llze — |2 (by Cauchy-Schwartz inequality)



Hence,

O
Vf(x > 8
Combining (@) and (B), we get
1 52
O] — O < —————=
S oLl — w3
<:>5k_6k+1 >i Ok S O
O 2L || — a3 ~ 2LD?

Therefore,

1 L O0p—Orpa S Ok

Skir Ok Ok0kr  2LD2 -Gy

Optimality gap is non-increasing (@), thus
)
5k2(5k+1=>—k21-
Ok+1
Hence,

N Sk J 1

Ser1  Op  2LD2- 64 — 2LD2

L1

Sei1  On — 2LD2

11 1

R S

5% Opa — 2LD?

1 1 1
— >

Or_1 Op_o  2LD?
1 1 1
>
09 01 — 2LD?
By telescoping sum,

11 k
>
Ser1 01 2LD?




What is 6,7

<(Vf(z1),x1 — xy) (by Convexity)
<V f(x)|2ller — 242 (by Cauchy-Schwartz inequality)
= IV f(z1) = V(@) lallzr — 2l2 (Vf(z.) =0)
< Lljzy — o3 (by L-Lipschitz)
< LD?
L1 2 (10)
o0y — LD?

1 k 1
> + —
Spp1 — 2LD2% 6

k 1
> 4=
= 92LD?  LD?2
k+2
- 2LD?

o8 < 2LD?

k+1 k‘ T 9
2LD?
= 01 < -

Bibliographic notes

Regarding the smoothness and the gradient Lipschitzness, see Chapter 3 of [2] and
[8]. For the iteration complexity of gradient descent, Chapter 6 of [1] provides a nice
exposition.
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