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Lecture 2: Mathematical Background and Gradient Flow

1 Review: Calculus

We begin by reviewing some results in Calculus that will be used in this course.

Definition 1. (Derivative) For a function g(·) : R→ R and x ∈ R, consider

L = lim
δ→0

g(x+ δ)− g(x)

δ
.

The function g(·) is said to be “differentiable” if this limit exits for all x ∈ R. In that
case, L is called the “derivative” of g(·). We denote the derivative as g′(x), ġ(x), or
dg(x)
dx

.

Definition 2. (Gradient) For a differentiable function f : Rd → R and x ∈ Rd, the
gradient is

∇f(x) =


∂f
∂x1
∂f
∂x2...
∂f
∂xd

 ,

where
∂f

∂x1

= lim
δ→0

f(x1 + δ;x2; . . . ;xd)− f(x1;x2; . . . ;xd)

δ
.

Remark: The gradient of f is a function from Rd to Rd, and can be pictured as a
vector field (or vector-valued function), which gives the direction and the rate of the
fastest increase.

Definition 3. (Hessian) For a twice continuously differentiable function f : Rd → R
and x ∈ Rd, the Hessian matrix of f(·) at x is defined by

∇2f(x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xd

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xd

...
... . . . ...

∂2f
∂xd∂x1

∂2f
∂xd∂x2

· · · ∂2f
∂x2

d

 ∈ Rd×d
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Remark: The Hessian is a symmetric matrix.

Example: Let f : Rd → R be defined by f(x) = x2
1x2. Then

∇f(x) =

[
2x1x2

x2
1

]
∈ R2,

and

∇2f(x) =

[
2x2 2x1

2x1 0

]
∈ R2×2.

Theorem 1. (Fundamental Theorem of Calculus): Let f : [a, b] → R be a
continuously differentiable function. Then,

f(b)− f(a) =

∫ b

a

f ′(θ) dθ.

Theorem 2. Let f : Rd → R be a differentiable function. Define

xα = (1− α)x+ αy,

for some α ∈ [0, 1] and x,y ∈ Rd. Then,

f(y)− f(x) =

∫ 1

0

⟨∇f(xα), y − x⟩dα

Additionally, if f is twice differentiable, then

∇f(y)−∇f(x) =
∫ 1

0

∇2f(xα)(y − x)dα,

where ∇2f(xα) ∈ Rd×d and (y − x) ∈ Rd.

Theorem 3. (Chain Rule): Let f : R→ R and g : R→ R be differentiable functions,
and let x ∈ R. Then, the composite function h : R→ R given by h(x) = f

(
g (x)

)
is

differentiable on R and its derivative is given by

h′(x) = f ′ (g (x)) · g′(x)
Remark: This rule can be extended to functions of several variables. In general, if
y = g(z) and z = h(x), the chain rule is expressed as:

dy

dx
=

dy

dz
· dz
dx

This formula shows how the rate of change of a composite function is influenced by
the rates of change of its components.
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2 Norm

Consider a fixed vector x ∈ Rd. We define

l2-Norm:

||x||2 =

√√√√ d∑
i=1

x2
i

l1-Norm:

||x||1 =
d∑

i=1

|xi|

l∞-Norm:

||x||∞ = max
i
{|xi|}

Definition 4. (Cauchy-Schwartz Inequality): For every x,y ∈ Rd we have

⟨x,y⟩ ≤ ||x||2||y||2,

where ⟨·, ·⟩ is the inner-product.

3 Gradient Descent and Gradient Flow

A formal specification of the Gradient Descent (GD) algorithm follows.

Algorithm 1 Gradient Descent
input a starting point x0 ∈ dom f and step size η.
0: for k = 0, 1, . . . do
1: xk+1 ← xk − η∇f (xk)

2: End (for)

Remark: The parameter η is called the step size or learning rate.

In order to better understand gradient descent, let’s consider the curve that at
each instant proceeds in the direction of steepest descent of f . For this method, let’s
consider a function f : X → R, the method of gradient flow starts at some initial point
x0 ∈ X and seek to find the optimum of f by following the integral curve defined by
the following differential equations[3].
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Definition 5. (Gradient Flow): Let f : Rd → R be a smooth function. Gradient
flow is a smooth curve x : R→ Rd such that

dx(t)

dt
= −∇f

(
x(t)

)
3.1 Insights into the Algorithm

Gradient Flow is Gradient Descent as η → 0. More specifically, consider

lim
η→0

xk+1 − xk

η
= lim

η→0
−∇f(xk)

⇔ dx

dt
= −∇f(x)

Consider applying Gradient Flow to minx∈Rd f(x), that is

dx(t)

dt
= −∇f

(
x(t)

)
.

Then,

df

dt
=

d∑
i

∂f

∂xi

∂xi

∂t

=

〈
∇f(x), dx(t)

dt

〉
= ⟨∇f(x),−∇f(x)⟩
= −||∇f(x)||22
≤ 0

Thus, as long as ∇f(x) ̸= 0, the function is always decreasing. This does not
necessarily imply that it finds the optimal point.

3.2 Gradient Dominant Condition

Definition 6. (Gradient Dominant or Polyak-Lojasiewicz (PL) Condition):
We say a function f : Rd → R satisfies the “Gradient Dominance” condition if

||∇f(x)||22 ≥ 2µ

(
f(x)−min

x
f(x)

)
, for some µ > 0.

We say that f is µ-gradient dominant.
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Definition 7. (Stationary Point): Given a differentiable function f such that
f : Rd → R and x ∈ Rd, a stationary point is a point such that

∇f(x) = 0 ∈ Rd.

Remark: For any function satisfying the P.L. condition, every stationary point is a
global optimum point.

Example 1: All strongly convex functions

Example 2: f(x) = x2 + 4 sin2(x)

Definition 8. (Optimality Gap): Given a function f such that f : Rd → R, the
optimality gap is the difference between the value of f at xt ∈ Rd for some t ∈ R and
the minimum value of f over all possible x ∈ Rd, i.e.

f(xt)−min
x

f(x) = f(xt)− f∗,

where

f∗ := min
x

f(x).

Consequence: Suppose that f is additionally µ-gradient dominant. Then, taking
the derivative of an optimality gap we get

d(f(xt)− f∗)

dt
=

df(xt)

dt
, as f∗ is a constant

= −||∇f(xt)||22 , by Gradient Flow

≤ −2µ
(
f(xt)−min

x
f(x)

)
, since f is µ-gradient dominant

(1)

Inequality (1) implies that

f(xt)−min
x

f(x) ≤ e−2µt

(
f(x0)−min

x
f(x)

)
(2)

for µ-gradient dominant functions, where x0 is the initial point.
Why does (1) imply (2)? Let

θt := f(xt)− f∗.
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Then, inequality (1) can be expressed as

dθt
dt
≤ −2µθt

⇔ dθt
θt
≤ −2µdt

⇒
∫ θt

θ0

dθt
θt
≤

∫ t

0

−2µdt

⇔ log(θt)− log(θ0) ≤ −2µt , since
d

dx
log x =

1

x
.

Therefore,

θt
θ0
≤ exp(−2µt)

⇔ θt ≤ θ0exp(−2µt)

Plugging back in, we get

f(xt)−min
x

f(x) ≤ exp (−2µt)
(
f(x0)−min

x
f(x)

)

4 Convex Sets and Functions

Definition 9. (Convex Sets): A set C ⊆ Rd is called convex if for any x,y ∈ C

and any α ∈ [0, 1], we have

αx+ (1− α)y ∈ C.

Remark: This property ensures that the line segment between any two points in the
set lies entirely within the set. Geometrically, it implies that the set does not have
any “holes” or “gaps”.

Example 1: The vector space Rd.

Example 2: Hyper-planes

{x ∈ Rd : ⟨x, a⟩ = c}, a ∈ Rd, c ∈ R

.
Example 3: Half-spaces

{x ∈ Rd : ⟨x, a⟩ ≤ c}, a ∈ Rd, c ∈ R
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Example 4: lp-Norm-balls with p ≥ 1

||x||p ≤ r

⇔ (
∑
i

|xi|p)
1
p ≤ r

Definition 10. (Zero Order Characterization of Convex Functions): A func-
tion f : C → R defined over a convex set C is called convex if, for any x,y ∈ C and
any α ∈ [0, 1], the following inequality holds

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y).

Remark: In other words, a function is convex if the line segment between any two
points on its graph lies above the graph itself. Geometrically, this means that the
function does not have any “hills” between its points.

Remark: The opposite applies for concave functions, i.e.

f
(
αx+ (1− α)y

)
≥ αf(x) + (1− α)f(y).

For linear functions, the equality holds (they are both convex and concave)

f
(
αx+ (1− α)y

)
= αf(x) + (1− α)f(y).

Theorem 4. (First Order Characterization of Convex Functions): A differen-
tiable function f : C → R defined over a convex set C is called convex if and only if,
for any x,y ∈ C

f(y) ≥ f(x) + ⟨∇f(x), (y − x)⟩.

Theorem 5. (Second Order Characterization of Convex Functions): A twice-
differentiable function f : C → R defined over a convex set C is convex if and only
if, for any x ∈ C, the Hessian matrix evaluated at x is positive semi-definite, i.e.

∇2f(x) ⪰ 0.

Example 1: Linear Functions

f
(
αx+ (1− α)y

)
= αf(x) + (1− α)f(y)
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Example 2: Quadratic Functions

f(x) =
1

2
xTAx− bTx, λmin(A) ≥ 0

Example 3: Negative Entropy

f(x) =
d∑
i

xi log xi, x ∈ Rd

Example 4: Non-negative weighted sum of convex functions

F (x) =
n∑

i=1

αifi(x), αi ≥ 0, ∀i

Example 5: Sum of squared difference loss
n∑

i=1

1

2

(
yi − x⊤zi

)2

4.1 Strongly Convex Functions

Definition 11. (Zero Order Characterization of µ-Strongly Convex Func-
tions): A function f : C → R defined over a convex set C is µ-strongly convex w.r.t.
a norm || · || if, for any x,y ∈ C and any α ∈ [0, 1] we have

f
(
(1− α)x+ αy

)
≤ (1− α)f(x) + αf(y)− µ

2
α(1− α)||y − x||2,

for some µ > 0.

Theorem 6. (First Order Characterization of µ-Strongly Convex Functions):
A differentiable function f : C → R defined over a convex set C is µ-strongly convex
w.r.t. a norm || · || if and only if for any x,y ∈ C we have

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ µ

2
||y − x||2,

for some µ > 0.

Theorem 7. (Second Order Characterization of µ-Strongly Convex Func-
tions): A twice differentiable function f : C → R defined over a convex set C is
µ-strongly convex w.r.t. a norm || · || if and only if for any x ∈ C we have

y⊤∇2f(x)y ≥ µ∥y∥2

for some µ > 0 and any y ∈ Rd.

Remark: Theorem 7 is useful when showing a function is strongly convex when we
have the function’s Hessian.
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Bibliographic notes

More prelimiaries of calculus and linear algebra can be found in Chapter 2 of [1]. For
Gradient Flow, there is a nice blog article [2].
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