DSC 211 Introduction to Optimization Winter 2024 Scribe: Yunzhou Yan
Editors/TAs: Merlin Chang, Marialena Sfyraki
Lecture 16: (Continue) Min-Max Optimization

1 Saddle points in min-max optimization

The goal of min-max optimzation

Consider the following optimization problem:

$$
\inf _{x \in X} \sup _{y \in Y} g(x, y)
$$

where $g: X \times Y \rightarrow \mathbb{R}$ is a given function, X and Y are sets over which the optimization is performed, inf denotes the infimum (or greatest lower bound), and sup denotes the supremum (or least upper bound).

Definition of saddle points

Definition 1 (Saddle Points/Nash Equilibrium). Let $x \in X$ and $y \in Y$ and $g(\cdot, \cdot)$: $X \times Y \rightarrow \mathbb{R}$. A pair of points $\left(x_{*}, y_{*}\right) \in X \times Y$ is a saddle point of $g(\cdot, \cdot)$ if

$$
g\left(x_{*}, y\right) \leq g\left(x_{*}, y_{*}\right) \leq g\left(x, y_{*}\right), \forall x \in X, y \in Y
$$

Remark. This condition implies that at the saddle point, $g\left(x_{*}, y_{*}\right)$ represents a Nash equilibrium in the sense that no player can unilaterally improve their payoff by changing their strategy from x_{*} or y_{*}.

Theorem 1. Let $g: X \times Y \rightarrow \mathbb{R}$, where X and Y are non-empty sets. A point $\left(x_{*}, y_{*}\right)$ is a saddle point of g if and only if the following conditions are satisfied:

1. The supremum in $\sup _{y \in Y} \inf _{x \in X} g(x, y)$ is attained at y_{*}.
2. The infimum in $\inf _{x \in X} \sup _{y \in Y} g(x, y)$ is attained at x_{*}.
3. Moreover, $\sup _{y \in Y} \inf _{x \in X} g(x, y)=\inf _{x \in X} \sup _{y \in Y} g(x, y)$.

Remarks.

1. If inf sup and sup inf have different values, then there is no saddle point.
2. If a saddle point exists, then:

- There might be multiple ones, all of them must have the same minimax value, i.e., $\sup _{y \in Y} \inf _{x \in X} g(x, y)=\inf _{x \in X} \sup _{y \in Y} g(x, y)$
- The set of saddle points is the Cartesian product $X_{*} \times Y_{*}$ when nonempty.
- The set x_{*} is the optimal solution to $\inf _{x \in X} \sup _{y \in Y} g(x, y)$.
- The set y_{*} is the optimal solution to $\sup _{y \in Y} \inf _{x \in X} g(x, y)$.

Example of No Saddle Points

Consider the function $g(x, y)=(x-y)^{2}$ with $X=[-1,1]$ and $Y=[-1,1]$. Then, we evaluate the infimum and supremum as follows:

$$
\inf _{x \in X} \sup _{y \in Y}(x-y)^{2}=\inf _{x \in X}(1+|x|)^{2}=1,
$$

where the infimum is taken over the maximum value the function can achieve for each x, realizing that the maximum occurs at the endpoints of Y. Similarly,

$$
\sup _{y \in Y} \inf _{x \in X}(x-y)^{2}=\sup _{y \in Y} 0=0
$$

where the infimum for each y is achieved when $x=y$, leading to a minimum value of 0 for all y.

This discrepancy between the infimum of the supremum and the supremum of the infimum indicates that there are no saddle points for $g(x, y)=(x-y)^{2}$ over the given domain.

2 Metric to measure the progress of min-max optimization

In the context of min-max optimization, it is paramount to quantify the progress of optimization from the perspectives of participating entities. For a given function $g: X \times Y \rightarrow \mathbb{R}$, where X and Y represent the strategy sets for two players within the optimization problem, we define two metrics, $\ell(x)$ and $h(y)$, to assess progress from the viewpoints of the x-player and y-player respectively.

For the x-Player

Define $\ell(x)$ as the supremum of $g(x, y)$ over all $y \in Y$:

$$
\ell(x):=\sup _{y \in Y} g(x, y) .
$$

From the x-player's perspective, the progress is measured as:

$$
\ell(x)-\inf _{x \in X} \ell(x) .
$$

For the y-Player

Define $h(y)$ as the infimum of $g(x, y)$ over all $x \in X$:

$$
h(y):=\inf _{x \in X} g(x, y) .
$$

For the y-player's perspective, the progress is captured by:

$$
\sup _{y \in Y} h(y)-h(y) .
$$

Let $g: X \times Y \rightarrow \mathbb{R}$ be a given function, and $\hat{x} \in X, \hat{y} \in Y$ represent specific selections within their respective domains. By the definition of sup and inf, the following relation holds:

$$
\sup _{y \in Y} g(\hat{x}, y) \geq g(\hat{x}, \hat{y}) \geq \inf _{x \in X} g(x, \hat{y}) .
$$

Combining the optimality gap of each player, we have that

$$
\begin{aligned}
\operatorname{Gap}(\hat{x}, \hat{y}) & :=\ell(\hat{x})-\inf _{x \in X} \ell(x)+\sup _{y \in Y} h(y)-h(\hat{y}) \\
& =\sup _{y \in Y} g(x, y)-\inf _{x \in X} \sup _{y \in Y} g(x, y)+\sup _{y \in Y} \inf _{x \in X} g(x, y)-\inf _{x \in X} g(x, y) \\
& =\sup _{y \in Y} g(\hat{x}, y)-\inf _{x \in X} g(x, \hat{y})
\end{aligned}
$$

where the second-to-the-last line is by assuming the existence of a saddle point.
Definition 2 (Duality Gap). The duality gap $\operatorname{Gap}(\hat{x}, \hat{y})$ is defined as:

$$
\operatorname{Gap}(\hat{x}, \hat{y}):=\sup _{y \in Y} g(\hat{x}, y)-\inf _{x \in X} g(x, \hat{y}),
$$

Remark. Duality gap is always non-negative even if the saddle point does not exist. By the definition of sup and inf, we have

$$
\sup _{y \in Y} g(\hat{x}, y) \geq g(\hat{x}, \hat{y}) \geq \inf _{x} g(x, \hat{y})
$$

Therefore,

$$
\begin{aligned}
\operatorname{Gap}(\hat{x}, \hat{y}) & :=\sup _{y \in Y} g(\hat{x}, y)-\inf _{x \in X} g(x, \hat{y}) \\
& =\sup _{y \in Y} g(\hat{x}, y)-g(\hat{x}, \hat{y})+g(\hat{x}, \hat{y})-\inf _{x} g(x, \hat{y}) \\
& \geq 0
\end{aligned}
$$

ϵ-equilibrium / ϵ-saddle point

Assume a saddle point of $g(\cdot, \cdot)$ exists. Let us define the value v_{*} as follows:

$$
v_{*}=\inf _{x \in X} \sup _{y \in Y} g(x, y)=\sup _{y \in Y} \inf _{x \in X} g(x, y) .
$$

Definition 3 (ϵ-equilibrium / ϵ-saddle point). A pair $(\hat{x}, \hat{y}) \in X \times Y$ is an ε equilibrium or ε-saddle point if

$$
v_{*}-\varepsilon \leq \inf _{x \in X} g(x, \hat{y}) \leq v_{*} \leq \sup _{y \in Y} g(\hat{x}, y) \leq v_{*}+\varepsilon
$$

Remark. This definition extends the concept of a saddle point by introducing a margin of ε, allowing for a near-optimal equilibrium within an ε range of the optimal value v_{*}. Using the following inequality,

$$
\sup _{y \in Y} g(\hat{x}, y) \geq g(\hat{x}, \hat{y}) \geq \inf _{x \in X} g(x, \hat{y}),
$$

we can derive the following two inequalities

$$
\begin{gathered}
v_{*}-\varepsilon \leq \inf _{x \in X} g(x, \hat{y}) \leq v_{*} \leq g(\hat{x}, \hat{y}) \\
g(\hat{x}, \hat{y}) \leq \sup _{y \in Y} g(\hat{x}, y) \leq v_{*}+\varepsilon
\end{gathered}
$$

Thus, the above definition implies that

$$
v_{*}-\epsilon \leq g(\hat{x}, \hat{y}) \leq v_{*}+\epsilon
$$

Lemma 1. Given that the duality gap $\operatorname{Gap}(\hat{x}, \hat{y}) \leq \varepsilon$ and assuming the existence of a saddle point, it follows that the pair $(\hat{x}, \hat{y}) \in X \times Y$ constitutes an ε-equilibrium or ε-saddle point.

Proof. By definition of the duality gap

$$
\begin{aligned}
\operatorname{Gap}(\hat{x}, \hat{y}):= & \sup _{y \in Y} g(\hat{x}, y)-\inf _{x \in X} g(x, \hat{y}) \leq \varepsilon \\
& \Leftrightarrow \sup _{y \in Y} g(\hat{x}, y) \leq \inf _{x \in X} g(x, \hat{y})+\varepsilon .
\end{aligned}
$$

Given the optimal value

$$
v_{*}=\inf _{x \in X} \sup _{y \in Y} g(x, y)
$$

it follows from the definition that

$$
v_{*} \leq \sup _{y \in Y} g(\hat{x}, y) .
$$

Therefore, we can establish the chain of inequalities

$$
v_{*}=\inf _{x \in X} \sup _{y \in Y} g(x, y) \leq \sup _{y \in Y} g(\hat{x}, y) \leq \inf _{x \in X} g(x, \hat{y})+\varepsilon .
$$

This sequence demonstrates the relationship between the optimal value v_{*}, the supremum over y for a fixed \hat{x}, and the adjusted infimum over x for a fixed \hat{y} by an ε margin, reflecting the bounds within which v_{*} is situated.
The duality gap for a pair (\hat{x}, \hat{y}) is defined as:

$$
\operatorname{Gap}(\hat{x}, \hat{y}):=\sup _{y \in Y} g(\hat{x}, y)-\inf _{x \in X} g(x, \hat{y}) \leq \varepsilon
$$

This can be equivalently expressed as:

$$
\sup _{y \in Y} g(\hat{x}, y) \leq \inf _{x \in X} g(x, \hat{y})+\varepsilon \leq \sup _{y \in Y} \inf _{x \in X} g(x, y)+\varepsilon=v_{*}+\varepsilon
$$

Using similar arguments, we can prove the left side of the chain of inequalities.
Therefore, we have proven that

$$
v_{*}-\varepsilon \leq \inf _{x \in X} g(x, \hat{y}) \leq v_{*} \leq \sup _{y \in Y} g(\hat{x}, y) \leq v_{*}+\varepsilon
$$

Definition 4. Given a pair $(\hat{x}, \hat{y}) \in X \times Y$, it is considered to be an ε-equilibrium or ε-saddle point if the following condition holds:

$$
v_{*}-\varepsilon \leq \inf _{x \in X} g(x, \hat{y}) \leq v_{*} \leq \sup _{y \in Y} g(\hat{x}, y) \leq v_{*}+\varepsilon
$$

3 The algorithmic aspect of min-max optimization Review of online convex optimization

```
Algorithm 1 Online convex optimization
    for }t=1,2,\ldots\mathrm{ do
        Commit a point }\mp@subsup{z}{t}{}\mathrm{ with its convex decision space Z}\subset\mp@subsup{\mathbb{R}}{}{d}
        Receive a loss function }\mp@subsup{\ell}{t}{}(\cdot):Z->\mathbb{R}\mathrm{ and incurs a loss }\mp@subsup{\ell}{t}{}(\mp@subsup{z}{t}{})
    end for
```

The goal of online convex optimization is to learn to be competitive with the bestfixed predictor from the convex set S, which is captured by minimizing the regret. Formally, the regret of the algorithm relative to any fixed benchmark z^{*} in Z when running on a sequence of T examples is defined as

$$
\operatorname{Regret}_{T}\left(z_{*}\right)=\sum_{t=1}^{T} l_{t}\left(z_{t}\right)-\sum_{t=1}^{T} l_{t}\left(z_{*}\right) .
$$

The regret of the algorithm relative to a convex set Z is defined as

$$
\operatorname{Regret}_{T}(Z)=\underset{z_{*} \in Z}{\operatorname{argmax}} \operatorname{Regret}_{T}\left(z_{*}\right)
$$

The x-Player Perspective

Consider the x-player who, at each time step t, plays a strategy $x_{t} \in X$. Upon choosing this strategy, the x-player receives a loss function defined as:

$$
\ell_{t}(x):=g\left(x, y_{t}\right)
$$

where $g: X \times Y \rightarrow \mathbb{R}$ is a given function that determines the loss based on the player's choice x_{t} and the strategy y_{t} chosen by the opponent at time t.

The y-Player Perspective

From the perspective of the y-player, the game proceeds as follows: at each time step t, the y-player selects a strategy $y_{t} \in Y$. Upon making this selection, the y-player receives a loss function, which is defined as:

$$
h_{t}(y):=-g\left(x_{t}, y\right),
$$

where $g: X \times Y \rightarrow \mathbb{R}$ is the function determining the outcome based on the strategy x_{t} chosen by the opponent and the y-player's own choice y at time t.

Meta-algorithm for solving min-max problems

```
Algorithm 2 Meta-algorithm for Solving Min-Max Problems
    Initialize \(\mathrm{OAlg}^{x}(\mathrm{OCO}\) Algorithm for \(x)\) and \(\mathrm{OAlg}^{y}\) (OCO Algorithm for \(y\) ).
    Define weight sequence \(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{T}\).
    for \(t=1,2, \ldots, T\) do
        \(x\) plays \(x_{t} \leftarrow \operatorname{OAlg}^{x}\left(\alpha_{1} \ell_{1}, \alpha_{2} \ell_{2}, \ldots, \alpha_{t-1} \ell_{t-1}\right)\)
        \(y\) plays \(y_{t} \leftarrow \operatorname{OAlg}^{y}\left(\alpha_{1} h_{1}, \alpha_{2} h_{2}, \ldots, \alpha_{t-1} h_{t-1}\right)\)
        \(x\) receives \(\alpha_{t} \ell_{t}(x):=\alpha_{t} g\left(x, y_{t}\right)\)
        \(y\) receives \(\alpha_{t} h_{t}(y):=-\alpha_{t} g\left(x_{t}, y\right)\)
    end for
    Output the average strategies \(x_{T}\) and \(y_{T}\), where:
```

$$
\begin{aligned}
x_{T} & :=\frac{\sum_{t=1}^{T} \alpha_{t} x_{t}}{A_{T}}, \quad y_{T}:=\frac{\sum_{t=1}^{T} \alpha_{t} y_{t}}{A_{T}}, \\
\text { with } \quad A_{T} & :=\sum_{t=1}^{T} \alpha_{t} .
\end{aligned}
$$

From the x-player perspective:

- Play $x_{t} \in X$.
- Receives the loss function at $t, \alpha_{t} \ell_{t}(x):=\alpha_{t} g\left(x, y_{t}\right)$.
(Weighted) Regret of the x-player:

$$
\alpha \text {-Regret }{ }^{x}:=\sum_{t=1}^{T} \alpha_{t} \ell_{t}\left(x_{t}\right)-\inf _{x \in X} \sum_{t=1}^{T} \alpha_{t} \ell_{t}(x) .
$$

(Weighted) Average regret of the x-player:

$$
\overline{\alpha-\text { Regret }^{x}}:=\frac{\alpha-\text { Regret }^{x}}{A_{T}},
$$

where $A_{T}:=\sum_{t=1}^{T} \alpha_{t}$.

From the y-player perspective:

- Play $y_{t} \in Y$.
- Receives the loss function at $t, h_{t}(y):=-\alpha_{t} g\left(x_{t}, y\right)$.
(Weighted) Regret of the y-player:

$$
\alpha \text {-Regret }{ }^{y}:=\sum_{t=1}^{T} \alpha_{t} h_{t}\left(y_{t}\right)-\inf _{y \in Y} \sum_{t=1}^{T} \alpha_{t} h_{t}(y) .
$$

(Weighted) Average regret of the y-player:

$$
\overline{\alpha-\text { Regret }^{y}}:=\frac{\alpha-\text { Regret }^{y}}{A_{T}},
$$

where $A_{T}:=\sum_{t=1}^{T} \alpha_{t}$.

Guarantees of the meta-algorithm

Theorem 2. Let $g(x, y)$ be convex w.r.t x and concave w.r.t. y. The output $\left(\bar{x}_{T}, \bar{y}_{T}\right)$ of the meta-algorithm is an ϵ-equilibrium of $g(\cdot, \cdot)$, where

$$
\epsilon:=\overline{\alpha-\operatorname{Regret}^{x}}+\overline{\alpha-\operatorname{Regret}^{y}} .
$$

Also, the duality gap is bounded as

$$
\operatorname{Gap}\left(\bar{x}_{T}, \bar{y}_{T}\right):=\sup _{y \in Y} g\left(\bar{x}_{T}, y\right)-\inf _{x \in X} g\left(x, \bar{y}_{T}\right) \leq \overline{\alpha-\operatorname{Regret}^{x}}+\overline{\alpha-\text { Regret }^{y}} .
$$

x-perspective $\ell_{t}(x)=g\left(x, y_{t}\right)$

$$
\frac{1}{A_{T}} \sum_{t=1}^{T} \alpha_{t} g\left(x_{t}, y_{t}\right)=\frac{1}{A_{T}} \sum_{t=1}^{T} \alpha_{t} \ell_{t}\left(x_{t}\right)
$$

This expression can further be decomposed into the infimum over x in X of the weighted outcomes, adjusted by the weighted regret for the x-player, and be simplified by using the definition of α-Regret ${ }^{x}$ and $\overline{\alpha-\text { Regret }^{x}}$:

$$
\begin{align*}
& =\inf _{x \in X}\left(\sum_{t=1}^{T} \frac{1}{A_{T}} \alpha_{t} g\left(x, y_{t}\right)\right)+\frac{\alpha \text {-Regret }^{x}}{A_{T}} \\
& =\inf _{x \in X}\left(\sum_{t=1}^{T} \frac{1}{A_{T}} \alpha_{t} g\left(x, y_{t}\right)\right)+\overline{\alpha-\text { Regret }^{x}} \tag{1}
\end{align*}
$$

Using the Jensen's inequality, we have

$$
\begin{align*}
\leq & \inf _{x \in X} g\left(x, \sum_{t=1}^{T} \frac{\alpha_{t}}{A_{t}} y_{t}\right)+\overline{\alpha-\text { Regret }^{x}} \tag{2}\\
& \leq \sup _{y \in Y} \inf _{x \in X} g(x, y)+\overline{\alpha-\text { Regret }^{x}} \tag{3}
\end{align*}
$$

y-perspective $h_{t}(y)=-g\left(x_{t}, y\right)$

$$
\frac{1}{A_{T}} \sum_{t=1}^{T} \alpha_{t} g\left(x_{t}, y_{t}\right)=\frac{1}{A_{T}}-\sum_{t=1}^{T} \alpha_{t} h_{t}\left(y_{t}\right)
$$

This expression can further be decomposed into the infimum over y in Y of the weighted outcomes, adjusted by the weighted regret for the y-player, and be simplified by using the definition of α-Regret ${ }^{y}$ and $\overline{\alpha-\text { Regret }^{y}}$:

$$
\begin{aligned}
= & -\inf _{y \in Y}\left(\sum_{t=1}^{T} \frac{1}{A_{T}} \alpha_{t} g\left(x, y_{t}\right)\right)-\frac{\alpha-\text { Regret }^{y}}{A_{T}} \\
& =\sup _{y \in Y}\left(\sum_{t=1}^{T} \frac{1}{A_{T}} \alpha_{t} g\left(x_{t}, y\right)\right)-\overline{\alpha-\text { Regret }^{y}}
\end{aligned}
$$

Using the Jensen's inequality, we have

$$
\begin{gather*}
\geq \sup _{y \in Y} g\left(\sum_{t=1}^{T} \frac{\alpha_{t}}{A_{t}} x_{t}, y\right)-\overline{\alpha-\text { Regret }^{y}} \tag{4}\\
\geq \inf _{x \in X} \inf _{y \in Y} g(x, y)-\overline{\alpha-\text { Regret }^{y}} \tag{5}
\end{gather*}
$$

Thus, from (Z) and (四), we have

$$
\frac{1}{A_{T}} \sum_{t=1}^{T} \alpha_{t} g\left(x_{t}, y_{t}\right) \leq \inf _{x \in X} g\left(x, \sum_{t=1}^{T} \frac{\alpha_{t}}{A_{t}} y_{t}\right)+\overline{\alpha-\text { Regret }^{x}}
$$

and

$$
\frac{1}{A_{T}} \sum_{t=1}^{T} \alpha_{t} g\left(x_{t}, y_{t}\right) \geq \sup _{y \in Y} g\left(\sum_{t=1}^{T} \frac{\alpha_{t}}{A_{t}} x_{t}, y\right)-\overline{\alpha-\text { Regret }^{y}}
$$

which implies that

$$
\operatorname{Gap}\left(\bar{x}_{T}, \bar{y}_{T}\right):=\sup _{y \in Y} g\left(\bar{x}_{T}, y\right)-\inf _{x \in X} g\left(x, \bar{y}_{T}\right) \leq \overline{\alpha-\operatorname{Regret}^{x}}+\overline{\alpha-\operatorname{Regret}^{y}}
$$

First implication

Recall the Theorem:
Theorem 3. Let $g(x, y)$ be convex w.r.t x and concave w.r.t. y. The output $\left(\bar{x}_{T}, \bar{y}_{T}\right)$ of the meta-algorithm is an ϵ-equilibrium of $g(\cdot, \cdot)$, where

$$
\epsilon:=\overline{\alpha-\text { Regret }^{x}}+\overline{\alpha-\text { Regret }^{y}} .
$$

Also, the duality gap is bounded as

$$
\operatorname{Gap}\left(\bar{x}_{T}, \bar{y}_{T}\right):=\sup _{y \in Y} g\left(\bar{x}_{T}, y\right)-\inf _{x \in X} g\left(x, \bar{y}_{T}\right) \leq \overline{\alpha-\operatorname{Regret}^{x}}+\overline{\alpha-\operatorname{Regret}^{y}}
$$

We have the following implication:
Let $g(x, y)$ be convex w.r.t x and concave w.r.t. y. If the descision space X and Y are convex and compact and $g(\cdot, \cdot)$ is Lipschitz continuous, then we know there are sublinear regret algorithms. This implies our second implication.

Second implication

Theorem 4. Let X, Y be compact convex subsets of \mathbb{R}^{n} and \mathbb{R}^{m} respectively. Let $g(x, y): X \times Y \rightarrow \mathbb{R}$ be convex in its first argument and concave in its second, and Lipschitz with respect to both. Then,

$$
\min _{x \in X} \max _{y \in Y} g(x, y)=\max _{y \in Y} \min _{x \in X} g(x, y)
$$

Proof. From (B) and (B), we have

$$
\frac{1}{A_{T}} \sum_{t=1}^{T} \alpha_{t} g\left(x_{t}, y_{t}\right) \leq \sup _{y \in Y} \inf _{x \in X} g(x, y)+\overline{\alpha-\text { Regret }^{x}}
$$

and

$$
\frac{1}{A_{T}} \sum_{t=1}^{T} \alpha_{t} g\left(x_{t}, y_{t}\right) \geq \inf _{x \in X} \inf _{y \in Y} g(x, y)-\overline{\alpha-\text { Regret }^{y}}
$$

we can derive that

$$
\begin{aligned}
& \sup _{y} \inf _{x} g(x, y)+\overline{\alpha-\text { Regret }^{x}} \geq \inf _{x} \sup _{y} g(x, y)-\overline{\alpha-\text { Regret }^{y}} \\
\Leftrightarrow & \sup _{y} \inf _{x} g(x, y)+\overline{\alpha-\text { Regret }^{x}}+\overline{\alpha-\text { Regret }^{y}} \geq \inf _{x} \sup _{y} g(x, y)
\end{aligned}
$$

Recall the following lemma in the last lecture:

Lemma 2. Let $g(\cdot, \cdot): X \times Y \rightarrow \mathbb{R}$, where X and Y are not empty. Then,

$$
\inf _{x \in X} \sup _{y \in Y} g(x, y) \geq \sup _{y \in Y} \inf _{x \in X} g(x, y)
$$

Therefore, we get

$$
\min _{x \in X} \max _{y \in Y} g(x, y)=\max _{y \in Y} \min _{x \in X} g(x, y) .
$$

The above result together with the following theorem that we saw in the last lecture imply that a saddle point exsits for when $g(x, y)$ is convex w.r.t x and concave w.r.t. $y, g(\cdot, \cdot)$ is Lipschitz continuous, and the descision space X and Y are convex and compact.

Theorem 5. Let $g(x, y): X \times Y \rightarrow \mathbb{R}$, where X and Y are not empty. A point $\left(x_{*}, y_{*}\right)$ is a saddle point if and only if

- The supremum in $\sup _{y \in Y} \inf _{x \in X} g(x, y)$ is attained at y_{*} \& the infimum in $\inf _{x \in X} \sup _{y \in Y} g(x, y)$ is attained at x_{*}.
- Also, $\sup _{y \in Y} \inf _{x \in X} g(x, y)=\inf _{x \in X} \sup _{y \in Y} g(x, y)$.

4 Applications of the min-max theorem

Boosting as a bilinear game

Denote the training set $\left\{z_{j} \in \mathbb{R}^{d}, l_{j}=\{+1,-1\}\right\}_{j=1}^{m}$. Let $H:=\left\{h_{i}(\cdot)\right\}_{i=1}^{n}$ be a set of prediction functions, i.e.,

$$
h_{i}(\cdot): \mathbb{R}^{d} \rightarrow\{+1,-1\} .
$$

We can construct the misclassification matrix as

$$
A_{i, j}= \begin{cases}1 & \text { if } h_{i}\left(z_{j}\right) \neq l_{j} \\ 0 & \text { otherwise }\end{cases}
$$

We have that

$$
\min _{x \in \Delta_{n}} \max _{y \in \Delta_{m}} x^{\top} A y:=\min _{x \in \Delta_{n}} \max _{y \in \Delta_{m}} \sum_{i=1}^{n} \sum_{j=1}^{m} x[i] y[j] \mathbb{I}\left\{h_{i}\left(z_{j}\right) \neq l_{j}\right\}
$$

Assume the existence of a weak learning oracle, i.e.,

$$
\sum_{j=1}^{m} y[j] \mathbb{I}\left\{h_{i_{*}}\left(z_{j}\right) \neq l_{j}\right\} \leq \frac{1}{2}-\gamma,
$$

where $\gamma>0$. Here, i_{*} is the index of the predictor that gives a y-weighted error better than chance. Furthermore, for any $y \in \Delta_{m}$,

$$
\min _{x \in \Delta_{n}} x^{\top} A y \leq e_{i_{*}}^{\top} A y \leq \frac{1}{2}-\gamma
$$

Recall $v_{*}=\max _{y \in \Delta_{m}} \min _{x \in \Delta_{n}} x^{\top} A y$. These imply that

$$
v_{*} \leq \frac{1}{2}-\gamma<\frac{1}{2}
$$

Thus,

$$
\max _{y \in \Delta_{m}} \min _{x \in \Delta_{n}} x^{\top} A y=v_{*} \leq \frac{1}{2}-\gamma
$$

As we know the Nash equilibrium/Saddle points $\left(x_{*}, y_{*}\right)$ exist,

$$
x^{* \top} A y_{*}=v_{*} \leq \frac{1}{2}-\gamma .
$$

The above implies that there exists $x_{*} \in \Delta_{n}$ such that

$$
\forall j \in[m]: \sum_{i=1}^{n} x_{*}[i] \mathbb{I}\left\{h_{i}\left(z_{j}\right) \neq l_{j}\right\}=x^{* \top} A e_{j} \leq v_{*} \leq \frac{1}{2}-\gamma<\frac{1}{2}
$$

Less than half of the base predictors misclassify when weighted by $x_{*}[i]$ for each sample $j \in[m]$. The above implies that

$$
\sum_{i=1}^{n} x_{*}[i] \mathbb{I}\left\{h_{i}\left(z_{j}\right) \neq l_{j}\right\}=x^{* \top} A e_{j} \leq v_{*} \leq \frac{1}{2}-\gamma<\frac{1}{2}
$$

We can correctly classify all the samples using a weighted majority vote.

5 Meta-algorithm for solving min-max problems (Simultaneously Play)

Instance of the meta-algorithm

$$
O A l g^{x}=F T R L, O M D, \text { OptimisticMD }, \ldots
$$

```
Algorithm 3 Meta-algorithm for solving min-max problems (Simultaneously Play)
    \(\mathrm{OAlg}^{x}\) (OCO Alg. of \(\left.x\right)\) and \(\mathrm{OAlg}^{y}\) (OCO Alg. of \(y\) ).
    Weight sequence \(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{T}\).
    for \(t=1,2, \ldots, T\) do
    \(\left\{\begin{array}{l}\text { x plays } x_{t} \leftarrow \operatorname{OAlg}^{x}\left(\alpha_{1} \ell_{1}, \alpha_{2} \ell_{2}, \ldots, \alpha_{t-1} \ell_{t-1}\right) \\ \text { y plays } y_{t} \leftarrow \operatorname{OAlg}^{y}\left(\alpha_{1} h_{1}, \alpha_{2} h_{2}, \ldots, \alpha_{t-1} h_{t-1}\right)\end{array}\right.\)
    \(\left\{\begin{array}{l}\mathrm{x} \text { receives } \alpha_{t} \ell_{t}(x):=\alpha_{t} g\left(x, y_{t}\right) \\ \mathrm{y} \text { receives } \alpha_{t} h_{t}(y):=-\alpha_{t} g\left(x_{t}, y\right)\end{array}\right.\)
    end for
    Output: \(\left(\bar{x}_{T}:=\frac{\sum_{t=1}^{T} \alpha_{t} x_{t}}{A_{T}}, \bar{y}_{T}:=\frac{\sum_{t=1}^{T} \alpha_{t} y_{t}}{A_{T}}\right)\), where \(A_{T}:=\sum_{t=1}^{T} \alpha_{t}\).
```

$$
O A l g^{y}=F T R L, O M D, O p t i m i s t i c M D, \ldots
$$

Assume that $\alpha_{t}=1$ and $\overline{x_{T}}$ and $\overline{y_{T}}$ are ϵ-equilibrium points

$$
\epsilon=\frac{\boldsymbol{\operatorname { R e g r e t }}_{T}(\mathrm{OMD})}{T}+\frac{\boldsymbol{\operatorname { R e g r e t }}_{T}(\mathrm{OMD})}{T}=\frac{\mathcal{O}(\sqrt{T})}{T} \rightarrow 0 \text {, as } T \rightarrow \infty
$$

Question: Can we get a better rate than $\mathcal{O}\left(\frac{1}{\sqrt{T}}\right)$? Yes!

Recall Online Mirror Descent

The function $\ell_{t}(z)$ is convex but not necessarily differentiable. $g_{t} \in \partial \ell_{t}\left(z_{t}\right)$ is the subgradient of $\ell_{t}(\cdot)$ at z_{t}.

```
Algorithm 4 Online Mirror Descent
    for \(t=1,2, \ldots\) do
        \(z_{t+1}=\arg \min _{z \in C}\left\langle g_{t}, z-z_{t}\right\rangle+\frac{1}{\eta} D_{z_{t}}^{\phi}(z)\).
    end for
```

Mirror Descent has

$$
\sum_{t=1}^{T} \ell_{t}\left(z_{t}\right)-\ell_{t}\left(z^{*}\right) \leq \frac{1}{\eta} D_{z_{1}}^{\phi}\left(z^{*}\right)+\sum_{t=1}^{T} \frac{\eta}{2}\left\|g_{t}\right\|_{*}^{2},
$$

for any benchmark $z^{*} \in Z$.
If the loss $\ell_{t}(\cdot)$ is scaled by α_{t},

$$
\alpha-\operatorname{Regret}_{z}\left(z^{*}\right) \leq \frac{1}{\eta} D_{z_{1}}^{\phi}\left(z^{*}\right)+\sum_{t=1}^{T} \frac{\eta}{2}\left\|\alpha_{t} g_{t}\right\|_{*}^{2},
$$

for any benchmark $z^{*} \in Z$.
Assume there is a good guess m_{t} of g_{t}.

```
Algorithm 5 Optimistic Mirror Descent
    for \(t=1,2, \ldots\) do
        \(z_{t-\frac{1}{2}}=\arg \min _{z \in C} \alpha_{t-1}\left\langle g_{t-1}, z\right\rangle+\frac{1}{\eta} D_{z_{t-\frac{3}{2}}}^{\phi}(z)\).
        \(z_{t}=\arg \min _{z \in C} \alpha_{t}\left\langle m_{t}, z\right\rangle+\frac{1}{\eta} D_{z_{t-\frac{1}{2}}}^{\phi}(z)\).
    end for
```

We have that

$$
\alpha-\operatorname{Regret}^{z}\left(z^{*}\right) \leq \frac{1}{\eta} D_{z_{1}}^{\phi}\left(z_{*}\right)+\sum_{t=1}^{T} \frac{\eta}{2}\left\|\alpha_{t}\left(g_{t}-m_{t}\right)\right\|_{*}^{2},
$$

for any benchmark $z^{*} \in Z$.
By putting two Optimistic Mirror Descent against each other, we can get $\mathcal{O}\left(\frac{1}{T}\right)$ in a min-max problem, see e.g., [3] for details.

6 Bibliographic notes

More materials about min-max optimization can be found in [[] , [2], [3], [$[4]$.

References

[1] Francesco Orabona, A Modern Introduction to Online Learning, Chapter 11.
[2] Jun-Kun Wang, Jacob Abernethy, and Kfir Y. Levy, No-Regret Dynamics in the Fenchel Game: A Unified Framework for Algorithmic Convex Optimization, Mathematical Programming, 2023.
[3] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E. Schapire, Fast Convergence of Regularized Learning in Games, NeurIPS 2015.
[4] Robert E. Schapire and Yoav Freund, Boosting: Foundations and Algorithms, MIT Press, 2012.

