
DSC 211 Introduction to Optimization Winter 2024 Instructor: Jun-Kun Wang
Scribe: Merlin Chang, Marialena Sfyraki Feb 22, 2024
Editors/TAs: Merlin Chang, Marialena Sfyraki

Lecture 14: Online Linear Optimization and Regert

1 Online Optimization Recap
Recall the setting for online optimization,

Protocol/Setting
1: for t = 1, 2, . . . do
2: Commit a point zt with its convex decision space Z ⊂ Rd.
3: Receive a loss function ℓt(·) : Z → R and incurs a loss ℓt(zt).
4: end for

The objective is to devise a strategy of making decision in the decision space Z

at each step t where the cumulative regret is minimized:

Definition 1 (Regret with respect to a benchmark z∗).

RegretT (z∗) =
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(z∗)

where z∗ ∈ Z is any fixed benchmark in Z.

2 Online Linear Optimization
Online linear optimization refers to online optimization problems where the loss func-
tion is linear in its first argument.

Protocol/Setting
1: for t = 1, 2, . . . do
2: Commit a point zt with its convex decision space Z ⊂ Rd.
3: Receive a loss function ℓt(z) = c⊤t zt and incurs a loss ℓt(zt).
4: end for

1

In this case, the cumulative regret that we want to minimize with respect to a
fixed benchmark is defined as

RegretT (z∗) =
T∑
t=1

c⊤t zt −
T∑
t=1

c⊤t z∗

Let’s consider the following applications for OLO.

2.1 Application 1 - Path Planning
Imagine you wish to send a steam of information over the web through a series of
connected network of servers. The cost between any two servers can change at each
time step t. We can then formulate OLO with the following assumptions:

• Let A represents the set of paths in the given network of servers with d edges.
In this case, A ⊂ {0, 1}d ⊂ Rd is our decision space.

• Z be the set of potential weight for the edges of the graph. In other words, any
z ∈ Z is a potential gradient of the loss function at any given time step.

• If we wish to send one packet of information through a path a at time t, then
the total cost is simply a⊤t zt, which correspond to the linear loss lt(a) = a⊤t zt,
where zt is the cost of the path at time t.

• The cumulative regret Rbest corresponds to the total extra cost of sending a
steam of information compare to the best/benchmark path in hindsight.

2.2 Application 2 - Prediction with expert advice
Let’s consider the decision space is the probability simplex.

∆n := {z ∈ Rn :
n∑

i=1

z[i] = 1, z[i] ≥ 0}.

In this case, OLO at each time step has the following interpretation, at each t,
plays zt ∈ ∆n, receives a cost vector ct,

⟨zt, ct⟩ =
n∑

i=1

zt[i]ct[i]

=
n∑

i=1

P(it = i)ct[i]

= Eit∼zt

[
ct[it]

]
2

3 OLO Algorithms

3.1 FTRL
Recall that the FTRL algorithm is aimed at solving the stability issue with FTL, by
adding a strongly convex regularized term at each around. At round t, play

zt = argmin
z∈Z

t−1∑
s=1

ℓs(z) + R(z),

where R(z) : Z → R is strongly convex.
Let’s consider the following settings, the decision space is still the probability simplex:

∆n := {z ∈ Rn :
n∑

i=1

z[i] = 1, z[i] ≥ 0}.

Let ϕ(·) be the negative entropy. We have proven this in HW 1, that the negative
entropy is 1-strongly convex with respect to ∥ · ∥1 when restricted to the probability
simplex.

Lemma 1.
max
z∈∆n

ϕ(z)− min
z∈∆n

ϕ(z) = log n.

Proof. maxz∈∆n ϕ(z) = 0, minz∈∆n ϕ(z) is same as maximizing the entropy. One way
to think of entropy is a metric that measures how much uncertainty there is in the
system. We can see that when the probability distribution is exactly uniform, we
have the most amount of uncertainty. Thus, we know that when z∗ = 1

n
, entropy is

maximized. Thus, we can see that

max
z∈∆n

ϕ(z)− min
z∈∆n

ϕ(z) = 0− ϕ(z∗)

= −
∑ 1

n
log

1

n

= log n

Lemma 1 provide a way to bound the difference between any two regulaized terms.
If we let R(·) = ηϕ(·), then we have the following bound:

R(x)−R(y) ≤ η log n

for any x, y ∈ ∆n.

3

Recall the FTRL theorem in last lecture: Suppose each ℓ1(·), ℓ2(·), . . . , ℓT (·) is convex
and each ℓt(·) is Lt-Lipschitz w.r.t. a norm ∥ · ∥. Denote L0 as the constant such that
Lt ≤ L0.

Theorem 1. FTRL with a η-strongly convex regularizer R(·) w.r.t. ∥ · ∥ has

RegretT (z∗) ≤ R(z∗)−R(z1) +
TL2

0

η
.

Let us apply the theorem to OLO with the decision space being the probability
simplex, where ∥ · ∥ ← ∥ · ∥1 and R(·)← ηϕ(·). We have

RegretT (z∗) ≤ R(z∗)−R(z1) +
TL2

0

η

≤ η log n+
TL2

0

η

= 2L0(
√
T log n), when η =

√
TL2

0

log n
.

Hence, the regret depends logarithmically with the number of experts/items (i.e.,√
log n), which is in contrast to the case of using the squared of the l1 norm as the

regularizer (i.e.,
√
n). A similar result was shown when we studied Mirror Descent in

Lecture 12.
If we apply online gradient descent to it, the update step in FTRL would be the

following:

zt = arg min
z∈∆n

t−1∑
s=1

⟨z, cs⟩+
1

η

n∑
i=1

zi log zi.

The update step has a closed form solution, for each i ∈ [n],

zt[i] =
exp

(
−η
∑t−1

s=1 cs[i]
)

∑n
j=1 exp

(
−η
∑t−1

s=1 cs[j]
)

This can be solved by formulating it as constraint optimization restricting the domain
to be ∆n and using KKT conditions to derive the final solution.

3.2 Online Mirror Descent
Recall in offline setting, mirror descent has the following guarantee:

4

Theorem 2. Choose a generating function ϕ(z) that is 1-strongly convex w.r.t. ∥ · ∥.
Then, Mirror Descent has

T∑
t=1

f(zt)− f(z∗) ≤
1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥gt∥2∗,

where gt ∈ ∂f(zt) is the sub-gradient of f(·) at zt and Dϕ
z1
(z∗) is the initial Bregman

Divergence.

In the online setting, we have the following theorem:

Theorem 3. Choose a generating function ϕ(z) that is 1-strongly convex w.r.t. ∥ · ∥.
Then, Mirror Descent has

T∑
t=1

ℓt(zt)− ℓt(z∗) ≤
1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥gt∥2∗,

for any benchmark z∗ ∈ Z.

where ℓt(z) is convex but not necessarily differentiable, and gt ∈ ∂ℓt(zt) is the sub-
gradient of ℓt(·) at zt.
The analysis and proof follow very similarly to mirror descent in offline setting in
Lecture 12, and we just need to let f(·)← ℓt(·) in the proof. You are encouraged to
check this.

3.3 Optimistic Mirror Descent
Assume there is a good guess mt of gt, at every iteration, we make 2 updates, where
first one is the same as mirror descent. The second update rely on the optimistic
guess of the sub-gradient mt.

1: for t = 1, 2, . . . do
2: zt− 1

2
= argminz∈C⟨gt−1, z⟩+ 1

η
Dϕ

z
t− 3

2

(z).

3: zt = argminz∈C⟨mt, z⟩+ 1
η
Dϕ

z
t− 1

2

(z).

4: end for

RegretT (z∗) ≤
1

η
Dϕ

z1
(z∗) +

T∑
t=1

η

2
∥gt −mt∥2∗.

for any benchmark z∗ ∈ Z.

5

From the bound, it the guess mt is close to gt, then the regret can be potentially
better than O(

√
T) of those non-optimistic variants, e.g., Online Mirror Descent.

On the other hand, even if the guess mt is a poor estimate of gt, it can still have
O(
√
T) regret as those non-optimistic variants. Specifically, if the size of both mt

and gt is bounded by G, then the second term of the regret bound above can be
upper-bounded as

∥gt −mt∥2∗ ≤ (∥gt∥∗ + ∥mt∥∗)2 ≤ 4G2

Thus, the regret bound is still O(
√
T) with an appropriately chosen η.

4 Some notions of regret
Recall we discuss that it is impossible to design an algorithm that has an o(T) upper
bound of the following metric:

T∑
t=1

ℓt(zt)−
T∑
t=1

min
z∈Z

ℓt(z). (1)

It is emphasized that we observe ℓt(·) only after committing a point zt in the decision
space Z. For the metric defined on (1), when we do not commit a point that is the
argmin of a loss function ℓt(·) that we are going to receive, we will suffer some loss
at each round, and consequently the value of (1) will grow linearly with T . This
motivated us to consider “regret” with respect to a fixed benchmark action z∗:

RegretT (z∗) =
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(z∗).

One question arises is that: Does an algorithm has an O(
√
T) regret imply it also

has O(
√
T) cumulative loss?

Consider the following situation with two experts with the following loss sequences.

• Expert 1: 1, 1, 1, 1, 1, . . . , 1, 0, 0, 0, 0, 0, . . . , 0

• Expert 2: 0, 0, 0, 0, 0, . . . , 0, 1, 1, 1, 1, 1, . . . , 1

We can see that the cumulative loss for our algorithm is the following:
T∑
t=1

ℓt(zt) = RegretT (z∗) +
T∑
t=1

ℓt(z∗)

≤ O
(√

T
)
+

T

2
, either expert as benchmark

= Ω(T)

6

Thus, the lower bound on the cumulative loss is still in linear of T .

We will present two remedies for this issue.
One way to solve this is with interval regret. Consider a time interval with the starting
point s ∈ [N] and the end point e ∈ [N] such that 1 ≤ s ≤ e ≤ T . The interval regret
with respect to an interval consists of rounds {s, s+ 1, . . . , e− 1, e}

Theorem 4 (Interval Regret). The interval regret for interval I is defined as:

RI :=
∑
t∈I

ℓt(zt)−min
z∈Z

∑
t∈I

ℓt(z).

If we could design an OCO algorithm that has RI = O(
√
I) interval regret, then we

can achieve sub-linear cumulative loss. To see this, consider the two-expert scenario
above, and let I1 be the first half of the round and interval 2 be the second half. Then
the cumulative loss for any interval is

∑
t∈I

lt(zt) = RI +min
z∈Z

∑
t∈I

ℓt(z) = O

(√
T

2

)
+ 0

Thus, we can see with 2 intervals, the total cumulative loss is on the order of O
(√

T
2

)
,

which is sub-linear with respect to T .
Remark. There exists an algorithm that guarantees RI = O

(√
|I| log T

)
for all

intervals I’s. This algorithm is insensitive to the particular interval in question.

Another remedy is to consider dynamic regret. In other words, we will allow the
benchmark to be dynamic as oppose to a fixed point in the decision space.

Theorem 5 (Dynamic regret). Consider comparing a sequence of benchmarks y1, y2, . . . , yT ∈
Z.

RT ({y1, y2, . . . , yT}) =
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(yt).

We can see if y1 = y2 = . . . , yT = z∗, then we recover the standard regret

RegretT (z∗) =
T∑
t=1

ℓt(zt)−
T∑
t=1

ℓt(z∗).

On the other hand, if yt = argminy∈Z ℓt(z), then it becomes

T∑
t=1

ℓt(zt)−
T∑
t=1

min
z

ℓt(z).

7

Thus, we will try to aim somewhere in between the two above situations. In some
sense, We need to express the dynamic regret in terms of the complexity of the bench-
mark sequence.

We have the following notions for complexity of the benchmark sequence. First, we
consider the complexity in terms of how many times the benchmark is swapped in
the sequence. Let S denote the number of switches:

S := 1 +
T∑
t=2

1{yt ̸= yt−1}

Remark. There exists an algorithm that guarantees the following bound of the
dynamic regret:

RT ({y1, y2, . . . , yT}) = Õ(
√
ST).

In this case, if S is a small constant, namely only a few switches during the sequence,
then the dynamic regret is still sub-linear.
Another view for sequence complexity is the variation of the loss sequence, which is
defined as

VT =
T∑
t=2

max
z∈Z
|ℓt(z)− ℓt−1(z)|.

which can be understood as the cumulative differences between two consecutive loss
functions. Putting all together, we have the following theorem:

Theorem 6. If an algorithm has RI = Õ(
√
|I|) for all intervals I, then it has

RT ({z∗1 , z∗2 , . . . , z∗T}) = Õ(
√
T + T 2/3V

1/3
T),

where z∗t = argminz∈Z ℓt(z).

5 Online to Batch Conversion
Let us consider a scenario that we receive training data in a streaming fashion

(x1, y1)︸ ︷︷ ︸
sample at round 1

, (x2, y2)︸ ︷︷ ︸
sample at round 2

, . . . , (xT , yT)︸ ︷︷ ︸
sample at round T

,

and we apply an our algorithm to this scenario. On each round t, our OCO algorithm
chooses some zt ∈ Z and suffers loss ℓ(zt; xt, yt).

8

Theorem 7. Assume that each (xt, yt) is generated in an i.i.d manner. Let L(z) :=
E(x,y)[ℓ(z; x, y)] and z∗ := argminz∈Z L(z). Let z1, z2, . . . , zT be generated from an
OCO algorithm. Then,

E

 1

T

T∑
t=1

L(zt)

 ≤ L(z∗) +
1

T
E[RegretT (z∗)].

Furthermore, if L(·) is convex, then

E

L
 1

T

T∑
t=1

zt

 ≤ L(z∗) +

1

T
E[RegretT (z∗)]. (2)

Remark: If the underlying OCO algorithm enjoys a sub-linear regret, then the last
term on (2) 1

T
E[RegretT (z∗)] → 0 as T → ∞. As z∗ ∈ Z is the best to minimize

the population loss L(·), what (2) implies is that the OCO algorithm is a learning
algorithm. Recall we also saw that an OCO algorithm (e.g., Online Mirror Descent)
can also be used to solve (offline) optimization problems. This shows a deep interplay
between optimization and learning.

5.1 Probability Recap
We need a couple of notions.

• We will consider a filtration {Ht}. Informally, we can think of the filtration Ht

as the history up to round t.

• We will consider also a stochastic process X1, X2, . . . XT where each Xt is mea-
surable with respect to Ht. Informally, we can think of Xt is a deterministic
function of the history Ht; once we have the realization of Ht, we know Xt!

Definition 2. Martingale X1, X2, . . . XT is a martingale with respect to a filtration
{Ht}, if E[|Xt|] <∞ and E[Xt|Ht−1] = Xt−1.

Definition 3. Martingale difference sequence The process U1, U2, . . . , UT is a martin-
gale difference sequence if E[|Ut|] <∞ and E[Ut|Ht−1] = 0.

Implications:

• Clearly, Ut := Xt −Xt−1 is a martingale difference sequence. Since

E[Ut] = E[Xt −Xt−1|Ht−1] = E[Xt|Ht−1]− E[Xt−1|Ht−1] (3)
= Xt−1 − E[Xt−1|Ht−1] (4)
= Xt−1 −Xt−1, (5)

9

where the second to last equality uses the definition of {Xt} is a martingale,
and the last one uses that xt−1 is measurable w.r.t. Ht−1.

• The unconditional expectation E[Ut] = 0. This can be shown by an application
of the law of total expectation.

5.2 Proof of Theorem 7
Lemma 2. Let us define Ut :=

(
ℓ(zt; (xt, yt))− L(zt)

)
−
(
ℓ(z∗; (xt, yt))− L(z∗)

)
.

Then, we have
T∑
t=1

L(zt) ≤ L(z∗) + RegretT (z∗)−
T∑
t=1

Ut

Proof.

T∑
t=1

(
L(zt)− L(z∗)

)
=

T∑
t=1

ℓ
(
zt; (xt, yt)

)
− ℓ
(
z∗; (xt, yt)

)
− Ut (6)

≤
T∑
t=1

ℓ
(
zt; (xt, yt)

)
− inf

z∈Z
ℓ
(
z; (xt, yt)

)
− Ut (7)

Now we are ready to prove Theorem 7.

Proof. (of Theorem 7) Taking the expectation on both sides of the inequality in
Lemma 2, we have

1

T
E

 T∑
t=1

L(zt)

 ≤ 1

T
L(z∗) +

1

T
E
[
RegretT (z∗)

]
− 1

T
E

 T∑
t=1

Ut

 . (8)

Now observe that {Ut} is a martingale difference sequence. Hence, by the property
of a martingale difference sequence indicated in the recap (Subsection 5.1), we have
E
[∑T

t=1 Ut

]
= 0.

By combining the above results, we have completed the proof.

Bibliographic notes
For more details about Online Convex Optimization, see e.g., [1], [2], and [3].

10

References
[1] Shai Shalev-Shwartz Online Learning and Online Convex Optimization Founda-

tions and Trends in Machine Learning. 2011.

[2] Elad Hazan. Introduction to Online Convex Optimization. Second Edition. The
MIT Press. 2022.

[3] Francesco Orabona A Modern Introduction to Online Learning arXiv:1912.13213.
2023

11

	Online Optimization Recap
	Online Linear Optimization
	Application 1 - Path Planning
	Application 2 - Prediction with expert advice

	OLO Algorithms
	FTRL
	Online Mirror Descent
	Optimistic Mirror Descent

	Some notions of regret
	Online to Batch Conversion
	Probability Recap
	Proof of Theorem 7

