
DSC 211 Introduction to Optimization Winter 2024 Instructor: Jun-Kun Wang
Scribe: Yunzhou Yan February 20, 2024
Editors/TAs: Merlin Chang, Marialena Sfyraki

Lecture 13: Online convex optimization

1 Introduction to online convex optimization
Online convex optimization (OCO) lies at the intersection between learning and con-
vex optimization. Most OCO scenarios follow the following general protocol.

Protocol/Setting
1: for t = 1, 2, . . . do
2: Commit a point zt with its convex decision space Z ⊂ Rd.
3: Receive a convex loss function ℓt(·) : Z → R and incurs a loss ℓt(zt).
4: end for

The goal of OCO is to compete with any fixed comparator in a convex decision
space Z. Formally, the regret of the algorithm relative to any fixed benchmark z∗ in
Z is defined as

RegretT (z∗) :=
T∑
t=1

lt(zt)−
T∑
t=1

lt(z∗)

We want to achieve sub-linear regret (e.g. RegretT (z∗)
T

→ 0,as T → ∞). That is, the
average regret RegretT (z∗)

T
is vanishing.

Q: Why not compete with the best action at each around? i.e. why not consider

T∑
t=1

lt(zt)−
T∑
t=1

min
z

lt(z). (1)

A: Recall we observe ℓt(·) only after committing a point zt in the decision space Z.
For the metric defined on (1), when we do not commit a point that is the argmin of a
loss function ℓt(·) that we are going to receive, we will suffer some loss at each round,
and consequently the value of (1) will grow linearly with T . This motivated us to
consider “regret” with respect to a fixed benchmark action z∗:
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1.1 Online linear optimization
Online linear optimization (OLO) is a special case of online convex optimization where
the cost function lt is linear at each timestep. Let lt(z) = cTt zt.

Protocol/Setting
1: for t = 1, 2, . . . do
2: Commit a point zt with its convex decision space Z ⊂ Rd.
3: Receive a loss function ℓt(z) = c⊤t zt and incurs a loss ℓt(zt).
4: end for

We can reduce online convex optimization to online linear optimization. We can
bound the regret of OCO by the regret of OLO. Recall gx is a subgradient of f(x) :
Z → R at x if

f(y) ≥ f(x) + ⟨gx, y − x⟩, ∀y ∈ C

Therefore,
lt(zt)− lt(z∗)︸ ︷︷ ︸

per-round regret of OCO

≤ ⟨zt − z∗, ct⟩︸ ︷︷ ︸
per-round regret of OLO

,

where ct is the subgradient of lt(·) at zt.

2 Follow-the-Leader (FTL)
In the context of FTL, during the initial time step, we select the initial vector, and
subsequently, at each subsequent time step, we opt for the vector with the minimum
loss across all preceding rounds.

Algorithm 1 Follow-the-Leader(FTL)
Input a convex decision space Z ∈ Rd and zinit ∈ Z.

for t = 1, 2, . . . do
if t = 1 then

Commit zt = zinit
else

Commit zt = argminz∈Z
∑t−1

s=1 ls(z).
end if
Receive a convex loss function lt(·) : Z → R and suffer loss lt(zt).

end for
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Lemma 1. Let z1, z2, . . . be the sequences of points generated by FTL. Then, for any
benchmark z∗ ∈ Z:

RegretT (z∗) =
T∑
t=1

lt(zt)−
T∑
t=1

lt(z∗) ≤
T∑
t=1

lt(zt)−
T∑
t=1

lt(zt+1)

Now, we would like to prove the Lemma. Before we show the proof, it is clear
to see that if we subtract the term

∑T
t=1 lt(zt) from both sides, the lemma will be

equivalent to
∑T

t=1 lt(zt+1) ≤
∑T

t=1 lt(z∗)

Proof. We prove this inequality by induction. The base case of T = 1 follows directly
from the definition of zt+1. i.e. z2 = argminz∈Z l1(z) ⇒ z2 ≤ z∗
Assume the inequality holds for t = T − 1, then for all z∗ ∈ Z, we have

T−1∑
t=1

lt(zt+1) ≤
T−1∑
t=1

lt(z∗)

Now adding lT (zT+1) to both sides, then we get

lT (zT+1) +
T−1∑
t=1

lt(zt+1) ≤ lT (zT+1) +
T−1∑
t=1

lt(z∗)

⇔
T∑
t=1

lt(zt+1) ≤ lT (zT+1) +
T−1∑
t=1

lt(z∗).

The above holds for all z∗ ∈ Z and let z∗ = zT+1. Then, the above becomes

T∑
t=1

lt(zt+1) ≤
T∑
t=1

lT (zT+1) (2)

≤
T∑
t=1

lT (z∗), ∀z∗ ∈ Z, (3)

where the last inequality we used that zT+1 = argminz∈Z
∑T

t=1 lT (z). This concludes
our inductive argument.

Consider lt(z) = ∥z − ct∥22

Theorem 1. Assume maxt ∥ct∥ ≤ L. Then, Follow-The-Leader (FTL) has regret at
most

RegretT (z∗) ≤ 4L2(log(T ) + 1),

for any z∗ ∈ Rd.
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Proof. We assume that Z = Rd.
Using the Follow-The-leader (FTL) rule,

zt = argmin
z∈Z

(
t−1∑
s=1

∥z− cs∥22) = argmin
z∈Z

F (z)

Since F(z) is convex, we have

∂F (zt)

∂z
=

t−1∑
s=1

2(zt − cs) = 0 ⇒ zt =
1

t− 1

t−1∑
s=1

cs

namely, zt is the average of c1, . . . , ct−1. Note that we can rewrite

zt+1 =
1

t
(ct + (t− 1)zt) =

(
1− 1

t

)
zt +

1

t
ct,

which yields

zt+1 − ct =

(
1− 1

t

)
(zt − ct).

Therefore,

lt(zt)−lt(zt+1) =
1

2
∥zt−ct∥22−

1

2
∥zt+1−ct∥22 =

1

2

(
1−

(
1− 1

t

)2
)
∥zt−ct∥22 =

1

2
(
2

t
− 1

t2
)∥zt−ct∥22

≤ 1

2
(
2

t
)∥zt − ct∥22 =

1

t
∥zt − ct∥22.

Let L = maxt ∥ct∥. Since zt is the average of c1, . . . , ct−1, we have that ∥zt∥ ≤ L, and
therefore, by the triangle inequality, ∥zt − ct∥2 ≤ 2L. We have therefore obtained:

T∑
t=1

(lt(zt)− lt(zt+1)) ≤ (2L)2
T∑
t=1

1

t
.

Now we want to use induction to prove the inequality
T∑
t=1

1

t
≤ log(T ) + 1,

Firstly, let us consider the base case T = 1, it is obviously true that
∑1

t=1
1
t
= 1 <=

log(1) + 1 = 1

Now let us assume that the inequality holds for T − 1. Then we have
T−1∑
t=1

1

t
≤ log(T − 1) + 1,
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log(T )+1 = log((T−1)
T

T − 1
)+1 = log(T−1)+log(

T

T − 1
)+1 ≥

T−1∑
t=1

1

t
+log(

T

T − 1
)

Using the well-known inequality log(x) ≥ 1 − 1
x
, we have log( T

T−1
) ≥ 1

T
. After

substitution, we have

log(T ) + 1 ≥
T−1∑
t=1

1

t
+

1

T
=

T∑
t=1

1

t

Combining the above with Lemma 1 and using the inequality
T∑
t=1

1

t
≤ log(T ) + 1,

we can conclude that RegretT (z∗) ≤
∑T

t=1(lt(zt)−lt(zt+1)) ≤ (2L)2
∑T

t=1
1
t
≤ 4L2(log(T )+

1),which completes the proof.

Example: Failure of Follow-the-Leader:
Let the decision space z = [−1, 1] ⊆ R. Let ℓt(z) = ctz ∈ R, where ct is defined as
follows:

ct =


−0.5 ,if t = 1,

1 ,if t is even,
−1 ,if t is odd.

• Let z1 = θ ∈ [−1, 1], c1 = −0.5.
We hence have: l1(z1) = c1z1 = −0.5z1.

• z2 = argminz l1(z) = argminz c1z = argminz∈[−1,1] −0.5z = 1.
We hence have: c2 = 1, l2(z) = c2z2 = 1

• z3 = argminz l1(z) + l2(z) = argminz(c1 + c2)z = argminz∈[−1,1] 0.5z = −1.
We hence have: c3 = −1, l3(z) = c3z3 = 1

• z4 = argminz l1(z)+l2(z)+l3(z) = argminz(c1+c2+c3)z = argminz∈[−1,1] −0.5z =

1.
We hence have: c4 = 1, l4(z) = c4z4 = 1.

From this pattern, we can deduce that if t > 1

zt = arg min
z∈[−1,1]

(
t−1∑
s=1

asls(z)) =

argminz∈[−1,1] 0.5z = −1 if t is odd,
argminz∈[−1,1] −0.5z = 1 if t is even,

Therefore, the cumulative loss of the FTL algorithm will therefore be −0.5z1+(T−1),
where z1 ∈ [−1, 1]. while the cumulative loss of the fixed solution z∗ = 0 ∈ Z is 0.
Thus, the regret of FTL is Ω(T ), which is not sub-linear!
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3 Follow-the-Regularized-Leader (FTRL)
Follow-the-Regularized-Leader(FTRL) is a natural modification of the basic FTL al-
gorithm in which we minimize the loss on all past rounds plus a regularization term.
The goal of the regularization term is to stabilize the solution.

Algorithm 2 Follow-the-Regularized-Leader(FTRL)
Require: a strongly convex regularizer R(·) : Z → R.
for t = 1, 2, . . . do

Commit zt = argminz∈Z(
∑t−1

s=1 ls(z)) + R(z).
Receive a convex loss function lt(·) : Z → R and suffer loss lt(zt).

end for

Remark: There are connections between FTRL and Online Gradient Descent. Con-
sider ℓt(z) = ⟨z, ct⟩ and R(z) = 1

2
η∥z∥22. From the update rule of FTRL, we

know that zt = argminz∈Z
∑t−1

s=1⟨z, cs⟩ +
1
2η
∥z∥22 = argminz∈Z ϕ(z), where ϕ(z) =∑t−1

s=1⟨z, cs⟩+
1
2η
∥z∥22. Since ϕ(z) is convex and differentiable, by the optimaliy condi-

tion, zt satisfies:

∇ϕ(zt) =
t−1∑
s=1

cs +
1

η
zt = 0 (4)

⇒ zt = −η
t−1∑
s=1

cs = zt−1 − ηct−1 (5)

= zt−1 − η∇lt−1(zt−1) (6)

which becomes Online Gradient Descent!

Lemma 2. Let z1, z2, . . . be the sequences of points generated by FTRL. Then, for
any benchmark z∗ ∈ Z:

RegretT (z∗) =
T∑
t=1

lt(zt)−
T∑
t=1

lt(z∗) ≤ R(z∗)−R(z1) +
T∑
t=1

lt(zt)−
T∑
t=1

lt(zt+1)

Proof. Observe that running FTRL on l1, . . . , lT is equivalent to running FTL on
l0, l1, . . . , lT where l0 = R. Using Lemma 1, we obtain

T∑
t=0

(lt(zt)− lt(z∗)) ≤
T∑
t=0

(lt(zt)− lt(zt+1)),
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which leads to

R(z0)−R(z∗) + RegretT (z∗)

=
T∑
t=0

(lt(zt)− lt(z∗))

≤
T∑
t=0

(lt(zt)− lt(zt+1))

= R(z0)−R(z1) +
T∑
t=1

lt(zt)−
T∑
t=1

lt(zt+1),

rearranging the terms completes the proof.

Theorem 2. Consider running FTRL on a sequence of linear functions, lt(z) = ⟨z, ct⟩
for all t, with Z = Rd, and with the regularizer R(z) = 1

2η
∥z∥22. Then, for all z∗ we

have

RegretT (z∗) ≤
1

2η
∥z∗∥22 + η

T∑
t=1

∥zt∥22.

In particular, assume ∥z∗∥2 ≤ D and let G be such that ∥ct∥2 ≤ G for all t, then
by setting η = D

G
√
2T

we obtain

RegretT (z∗) ≤ DG
√
2T .

Proof. Using Lemma 2 and the FTRL update step zt+1 = zt − ηct,

RegretT (z∗) ≤ R(z∗)−R(z1) +
T∑
t=1

lt(zt)−
T∑
t=1

lt(zt+1) ≤
1

2η
∥z∗∥22 +

T∑
t=1

⟨zt − zt+1, ct⟩

=
1

2η
∥z∗∥22 + η

T∑
t=1

∥ct∥22

Now, if we substitute ∥z∗∥2 ≤ D and ∥ct∥2 ≤ G, we have

RegretT (z∗) ≤ DG
√
2T

So far, we have focused on Euclidean Regularization R(x) = 1
2
∥x∥22. Now consider

general R(x) that is strongly convex with respect to norm ∥ · ∥.
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Lemma 3. Let R(z) : Z → R be a µ-strongly convex function over Z with respect to
a norm ∥ · ∥. If ℓt(·) is Lt-Lipschitz with respect to ∥ · ∥, then

ℓt(zt)− ℓt(zt+1) ≤ Lt∥zt − zt+1∥ ≤ L2
t

µ
.

Remark: The lemma indicates that the difference between consecutive predictions
is bounded by Lt

µ
!

Proof. We have

zt = argmin
z∈Z

t−1∑
s=1

ls(z) + R(z) = argmin
z∈Z

t−1∑
s=1

Ft(z)

Since ls(z) is linear and R(z) is µ-strongly convex, then Ft(z) is also µ-strongly con-
vex!(We have proved it in our homework)
By strong convexity,

Ft(zt+1) ≥ Ft(zt) + ⟨∇Ft(zt), zt+1 − zt⟩+
µ

2
∥zt+1 − zt∥2

Ft+1(zt) ≥ Ft+1(zt+1) + ⟨∇Ft+1(zt+1), zt − zt+1⟩+
µ

2
∥zt+1 − zt∥2

Since zt and zt+1 are the minimizers of Ft(z) and Ft+1(z), then we have ∇Ft(zt) = 0

and ∇Ft+1(zt+1) = 0. As a result, the inequalities become

Ft(zt+1) ≥ Ft(zt) +
µ

2
∥zt+1 − zt∥2

Ft+1(zt) ≥ Ft+1(zt+1) +
µ

2
∥zt+1 − zt∥2

Combining the above two inequalities, we have

Ft+1(zt)− Ft(zt) ≥ Ft+1(zt+1)− Ft(zt+1) + µ∥zt − zt+1∥2.

⇔ lt(zt)− lt(zt+1) ≥ µ∥zt − zt+1∥2

Moreover, by Lipschitzness of ℓt(·),

Lt∥zt − zt+1∥ ≥ |ℓt(zt)− ℓt(zt+1)| ≥ µ∥zt − zt+1∥2

Lt

µ
≥ ∥zt − zt+1∥.

8



Theorem 3. Suppose each ℓ1(·), ℓ2(·), . . . , ℓT (·) is convex, and each ℓt(·) is Lt-Lipschitz
with respect to a norm ∥ · ∥. Denote L0 as the constant such that Lt ≤ L0. FTRL
with a µ-strongly convex regularizer R(·) with respect to ∥ · ∥ (e.g. µ

2
∥ · ∥2) has

RegretT (z∗) ≤ R(z∗)−R(z1) +
TL2

0

µ
.

Proof.

RegretT (z∗) =
T∑
t=1

ℓt(zt)− ℓt(z
∗) (By definition)

≤ R(z∗)−R(z1) +
T∑
t=1

(ℓt(zt)− ℓt(zt+1)) (By Lemma 2)

≤ R(z∗)−R(z1) +
T∑
t=1

L2
t

µ
(By Lemma 3)

≤ R(z∗)−R(z1) +
TL2

0

µ
(By Lt ≤ L0)

Bibliographic notes
For more details about Online Convex Optimization, see e.g., [1], [2], and [3].
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