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Lecture 12: Mirror Descent

1 Mirror Descent

1.1 Algorithm
Many results in optimization are relatively new. Mirror Descent method is one of
them which was introduced by Arkadi Nemirovsky in 1983.

We are already familiar with the Projected Gradient Descent (PGD) method for
solving a constrained optimization problem minx∈C f(x):

Algorithm 1 Projected Gradient Descent
1: for k = 1, 2, . . . do
2: xk+1 = ProjC

[
xk − η∇kf(xk)

]
.

3: end for

which was shown to be equivalent to the following in the first homework:

Algorithm 2 Projected Gradient Descent
1: for k = 1, 2, . . . do
2: xk+1 = argminx∈C⟨∇f(xk), x− xk⟩+ 1

2η
∥x− xk∥22.

3: end for

This formulation motivates considering other notions of distance instead of the
L2.

Definition 1. Let ϕ(·) : C → R be a convex and differentiable function. The Bregman
divergence induced by ϕ(·) is defiend as:

Dϕ
x(y) = ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩

The function ϕ is called the distance generating function. If instead of L2 distance,
we use Bregman Divergence, which in fact is not a distance because it is asymmetric,
we get another variant of the optimization method called Mirror Descent:
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Figure 1: Bregman Divergence between two points x and y with respect to a convex
function ϕ.

Algorithm 3 Mirror Descent
1: for k = 1, 2, . . . do
2: xk+1 = argminx∈C⟨∇f(xk), x− xk⟩+ 1

η
Dϕ

xk
(x).

3: end for

Remark: You can recover Projected Gradient Descent by letting ϕ(·) = 1
2
∥ · ∥22 to

get:

Dϕ
x(y) = ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩ = ∥y∥22

2
− ∥x∥22

2
− ⟨x, y − x⟩ = ∥y − x∥2

2

which means that PGD is an instance of Mirror Descent.

Example: Suppose C := {x ∈ Rd :
∑d

i=1 xi = 1, xi ≥ 0} is the probability simplex.
If we define ϕ(x) =

∑d
i=1 xi log xi to be negative entropy, then we get KullbackLeibler

(KL) divergence as Dϕ
y (x):

Dϕ
x(y) = ϕ(y)− ϕ(x)− ⟨∇ϕ(x), y − x⟩

=
d∑

i=1

yi log yi −
d∑

i=1

xi log xi −
d∑

i=1

(1 + log xi)(yi − xi)

=
d∑

i=1

yi log yi −
d∑

i=1

yi log xi −
d∑

i=1

(yi − xi) =
d∑

i=1

yi log
yi
xi

= DKL(y ∥ x)

Then the optimization problem for the update at each step becomes:
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xk+1 = argmin
x∈C

⟨∇f(xk), x− xk⟩+
1

η

d∑
i=1

xi log
xi

xk,i

which has a closed-form solution and we can find it using what we have learned about
duality theory and the optimality conditions. We first construct the Lagrangian
function in terms of the primal variable x and dual variables λ and µ:

L(x, λ, µ) = ⟨∇f(xk), x− xk⟩+
1

η

d∑
i=1

xi log
xi

xk,i

−
d∑

i=1

λixi + µ

 d∑
i=1

xi − 1


The stationarity condition then implies:

∇xL(x, λ, µ) = 0 ⇒ ∀i :
[
∇xL(x, λ, µ)

]
i
=
[
∇f(xk)

]
i
+

1

η
log

xi

xk,i

+
1

η
− λi + µ = 0

⇒ xi = xk,i exp
(
−η
[
∇f(xk)

]
i
+ η(λi − µ)− 1

)
Assuming xi ̸= 0, complementary slackness (λixi = 0) implies λi = 0 and therefore:

xi = xk,i exp
(
−η
[
∇f(xk)

]
i
− ηµ− 1

)
(1)

By the primal feasibility (
∑d

i=1 xi = 1) we have:

d∑
i=1

xi =

∑d
i=1 xk,i exp

(
−η
[
∇f(xk)

]
i

)
exp (ηµ+ 1)

= 1 (2)

⇔ µ =
1

η
log

 d∑
i=1

xk,iexp
(
−η
[
∇f(xk)

]
i

)− 1 (3)

By (1) and (3) we get that the solution to the following optimization problem for the
update:

xk+1 = argmin
x∈C

⟨∇f(xk), x− xk⟩+
1

η

d∑
i=1

xi log
xi

xk,i

is given by:

xi = xk+1,i =
xk,i exp

(
−η
[
∇f(xk)

]
i

)
∑d

i=j xk,j exp
(
−η
[
∇f(xk)

]
j

) , ∀i ∈ [d]
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1.2 An alternative view of Mirror Descent
We have seen that the update of Mirror Descent is:

xk+1 = argmin
x∈C

⟨∇f(xk), x− xk⟩+
1

2η
∥x− xk∥22

Equivalently, one can express the update step of Mirror Descent as:

∇ϕ(yk+1) = ∇ϕ(xk)− η∇f(xk) (4)
xk+1 = min

x∈C
Dϕ

yk+1
(x). (5)

Recall the following theorem from the Fenchel Conjugate:

Theorem 1. If ϕ(·) : Rd → R is closed and convex, then

y = ∇ϕ(x) ⇐⇒ x = ∇ϕ ∗(y).

Observe that we can rewrite:

y = ∇ϕ(x) = ∇ϕ
(
∇ϕ ∗(y)

)
,

x = ∇ϕ ∗(y) = ∇ϕ ∗ (∇ϕ(x)
)
.

Hence, we may write the step:

∇ϕ(yk+1) = ∇ϕ(xk)− η∇f(xk)

as:

yk+1 = ∇ϕ ∗ (∇ϕ(xk)− η∇f(xk)
)
.

Remark: When ϕ(x) =
∑d

i=1 xi log xi is negative entropy,

• ϕ(x) is defined only the probabiltiy simplex C := {x ∈ Rd :
∑d

i=1 xi = 1, xi ≥
0}.

• ϕ ∗(x) = log
(∑d

i=1 exp(xi)
)

.

• ∇ϕ ∗(∇ϕ(x)) = x for any x ∈ C.

• ∇ϕ(∇ϕ ∗(y)) = y up to an additive translation of 1d.
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A proof of the equivalency of the Mirror Descent update steps is stated below:
Proof.

xk+1 = argmin
x∈C

⟨∇f(xk), x− xk⟩+
1

η
Dϕ

xk
(x)

= argmin
x∈C

η∇f(xk)
⊤x+ ϕ(x)− ϕ(xk)− ⟨∇ϕ(xk), x− xk⟩

= argmin
x∈C

ϕ(x)− (∇ϕ(xk)− η∇f(xk))
⊤x

= argmin
x∈C

ϕ(x)− (∇ϕ(yk+1))
⊤x

= argmin
x∈C

ϕ(x)− ϕ(yk+1)− ⟨∇ϕ(yk+1), x− yk+1⟩

= argmin
x∈C

Dϕ
yk+1

(x)

1.3 Geometric Picture
The update steps of Mirror Descent:
Mirror Descent

yk+1 = ∇ϕ ∗ (∇ϕ(xk)− η∇f(xk)
)

xk+1 = min
x∈C

Dϕ
yk+1

(x).

can be visualized geometrically as in Figure 2.

Figure 2: Geometric picture of Mirror Descent.

1.4 Non-differentiable case
Now, assume that f(x) is convex but not necessarily differentiable. Let gk ∈ ∂f(xk)

be the subgradient of f(·) at xk. Then, the algorithm can be rewritten as:

5



1: for k = 1, 2, . . . do
2: xk+1 = argminx∈C⟨gk, x− xk⟩ + 1

ηD
ϕ
xk
(x).

3: end for
4: Output: x̄ :=

∑K
k=1 xK
K .

Recall the definition of the dual norm. Given a norm ∥ · ∥, the dual norm ∥ · ∥∗ is
defined as

∥y∥∗ := sup
x:∥x∥=1

x⊤y.

Additionally, recall the definition of the lp-norm, for any p ≥ 1:

∥x∥p :=

 d∑
i=1

(xi)
p

1/p

.

The dual norm is related to the lp-norm by the following theorem:

Theorem 2. If p, q ∈ [1,∞] and 1
p
+ 1

q
= 1, then ∥ · ∥p and ∥ · ∥q are dual with each

other.

Example. ∥ · ∥∞ and ∥ · ∥1 are dual to each other.

Now, we can introduce the following theorem, which we will use later:

Theorem 3. Choose a generating function ϕ(x) that is 1-strongly convex w.r.t. ∥ · ∥.
Then, Mirror Descent has

K∑
k=1

f(xk)− f(x∗) ≤
1

η
Dϕ

x1
(x∗) +

K∑
k=1

η

2
∥gk∥2∗.

1.5 Mirror Descent v.s. Projected Gradient Descent
Consider the following convex constrained optimization problem:

min
x∈C

f(x),

where C is a simplex, with ∆d := {x ∈ Rd :
∑d

i=1 x[i] = 1, x[i] ≥ 0, ∀i}. If we let K

be the number of iterations, then:
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Projected Gradient Descent ϵ = O

(√
d
K

)
Mirror Descent ϵ = O

(√
log d
K

)

Observe that the negative entropy ϕ(x) =
∑d

i=1 xi log xi is 1-strongly convex with
respect to ∥ · ∥1. Hence, from Theorem 3 we have that

K∑
k=1

f(xk)− f(x∗) ≤
1

η
Dϕ

x1
(x∗) +

K∑
k=1

η

2
∥gk∥2∗.

Let x1 =
1
d
1d. Then

Dϕ
x1
(x∗) = KL(x∗||x1)

=
d∑

i=1

x∗,i log
x∗,i

x1,i

=
d∑

i=1

x∗,i log x∗,i︸ ︷︷ ︸
≤0

+
d∑

i=1

x∗,i log
1

x1,i︸ ︷︷ ︸
=
∑d

i=1 x∗,i log d

≤ log d.

Now, suppose that ∥gk∥2∞ ≤ 1. Then,

K∑
k=1

f(xk)− f(x∗) ≤
1

η
Dϕ

x1
(x∗) +

K∑
k=1

η

2
∥gk∥2∞

≤ 1

η
log d+

η

2
K

= O
(√

K × log d
)

, for η =

√
log d

K
.

Additionally, for x̄ :=
∑K

k=1 xK

K
, when f(·) is convex, using Jensen’s inequality we can

write:

f(x̄)− f(x∗) = O

(√
log d

K

)
.
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Now let us look at the Projected Gradient Descent:

K∑
k=1

f(xk)− f(x∗) ≤
1

η
Dϕ

x1
(x∗) +

K∑
k=1

η

2
∥gk∥2∗

=
1

η

(
1

2
∥x1 − x∗∥22

)
+

K∑
k=1

η

2
∥gk∥22

≤ 1

η
D +

η

2
K
√
d

= O
(√

dKD
)

, for η =

√
D

K
,

where D is the bound of the inital distance. The second inequality follows from the
fact that for any vector z ∈ Rd,

∥z∥∞ ≤ ∥z∥2 ≤
√
d∥z∥∞.

Additionally, for x̄ :=
∑K

k=1 xK

K
, when f(·) is convex, using Jensen’s inequality we

can write:

f(x̄)− f(x∗) = O

(√
d

K

)
.

1.6 Proof of Theorem 3
We will now present the proof of Theorem 3.

Proof. We have that

f(xk)− f(x∗) ≤ ⟨gk, xk − x∗⟩ , by convexity of f(·)
= ⟨gk, xk+1 − x∗⟩+ ⟨gk, xk − xk+1⟩.

Since

xk+1 = argmin
x∈C

⟨gk, x⟩+
1

η
Dϕ

xk
(x),

by the optimality condition,〈
gk +

1

η
(∇ϕ(xk+1)−∇ϕ(xk)), x− xk+1

〉
≥ 0, ∀x ∈ C.
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In particular, this inequality holds for x = x∗ ∈ C. Thus, we have

f(xk)− f(x∗) ≤ ⟨gk, xk+1 − x∗⟩+ ⟨gk, xk − xk+1⟩

≤ 1

η

〈
∇ϕ(xk+1)−∇ϕ(xk), x∗ − xk+1

〉
+ ⟨gk, xk − xk+1⟩.

We will use the three point inequality, which states that:
For any xk+1, xk, x∗ ∈ C,

⟨∇ϕ(xk+1)−∇ϕ(xk), x∗ − xk+1⟩ = Dϕ
xk
(x∗)−Dϕ

xk+1
(x∗)−Dϕ

xk
(xk+1).

Therefore,

f(xk)− f(x∗) ≤
1

η

(
Dϕ

xk
(x∗)−Dϕ

xk+1
(x∗)−Dϕ

xk
(xk+1)

)
+ ⟨gk, xk − xk+1⟩.

We will now use the following fact:
Fact: ⟨u, v⟩ ≤ η

2
∥u∥2 + 1

2η
∥v∥2∗, by Fenchel-Young inequality

Thus,

⟨gk, xk − xk+1⟩ ≤
η

2
∥gk∥2∗ +

1

2η
∥xk − xk+1∥2.

Hence, we have

f(xk)− f(x∗) ≤
1

η

(
Dϕ

xk
(x∗)−Dϕ

xk+1
(x∗)−Dϕ

xk
(xk+1)

)
+

η

2
∥gk∥2∗ +

1

2η
∥xk − xk+1∥2.

From 1-strong convexity of ϕ(·) w.r.t. a norm ∥ · ∥, we have that

Dϕ
xk+1

(xk) ≥
1

2
∥xk − xk+1∥2

⇔ ϕ(xk+1)− ϕ(xk)− ⟨∇ϕ(xk), xk+1 − xk⟩ ≥
1

2
∥xk − xk+1∥22 .

Thus,

f(xk)− f(x∗) ≤
1

η

(
Dϕ

xk
(x∗)−Dϕ

xk+1
(x∗)

)
+

η

2
∥gk∥2∗.

Summing over k = 1, 2, . . . , K, we get
K∑
k=1

f(xk)− f(x∗) ≤
1

η
Dϕ

x1
(x∗) +

K∑
k=1

η

2
∥gk∥2∗. (6)
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For more details about mirror descent, see e.g., [1] and [2].
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