
DSC 211 Introduction to Optimization Winter 2024 Instructor: Jun-Kun Wang
Scribe: Merlin Chang, Marialena Sfyraki February 13, 2024

Lecture 11: Fenchel Conjugate, Dual formulation of the
Empirical Risk Minimization, and SDCA

1 Fenchel Conjugate
Definition 1 (Fenchel Conjugate). Consider a function f(·), then the Fenchel Con-
jugate is defined to be

f ∗(y) = sup
x∈dom(f)

(
y⊤x− f(x)

)
.

Claim. The conjugate function f ∗(y) is always convex, even if f(·) is non-convex.

Proof. Let hx(y) := y⊤x − f(x). Observe that hx is an affine function of y and
therefore also convex. Let α ∈ [0, 1] and y1, y2 ∈ dom(f ∗). Then, we have

f ∗ ((1− α)y1 + αy2
)
= sup

x∈dom(f)

hx

(
(1− α)y1 + αy2

)
= sup

x∈dom(f)

(1− α)hx (y1) + αhx (y2)

≤ (1− α) sup
x∈dom(f)

hx (y1) + α sup
x∈dom(f)

hx (y2)

= (1− α)f ∗ (y1) + αf ∗ (y2) .

Thus, by the zero-order characterization of convexity, we have that f ∗ is convex.

Exercise 1. f(x) = a⊤x+ b.

f ∗(y) = sup
x∈dom(f)

(
⟨y, x⟩ − f(x)

)
= sup

x∈dom(f)

(
⟨y − a, x⟩ − b

)
=

−b , if y = a

∞ , otherwise
.

Exercise 2. f(x) = 1
2
x2.
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f ∗(y) = sup
x∈dom(f)

(
⟨y, x⟩ − f(x)

)
= sup

x∈dom(f)

(
⟨y, x⟩ − 1

2
x2

)
Let h(x) := ⟨y, x⟩ − 1

2
x2. Then, the maximizer of h can be found as

∇h(x) = 0 ⇔ x = y

Thus,

f ∗(y) = x2 − 1

2
x2 =

1

2
x2

1.1 Fenchel inequality
By the definition of the conjugate function, we have the following result:

Theorem 1 (Fenchel inequality). For any x and y, we have

f ∗(y) ≥ y⊤x− f(x).

Question. When do we have the equality?

f ∗(y) + f(x) = y⊤x

In the following, we are going to answer this equation and prove the following
theorem:

Theorem 2. If f(·) is closed and convex, then the following are equivalent:

i. f ∗(y) + f(x) = y⊤x.

ii. y = ∇f(x).

iii. x = ∇f ∗(y).

Now, recall the definition of open and closed sets.

Definition 2 (Open set). A set S is open if it contains an open ball about each of
its points. That is, for all x ∈ S, there exists ϵ > 0 such that Bϵ(x) ⊂ S.
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Definition 3 (Closed set). A set S is closed if its complement is open.

We will now introduce the definition of closed functions.

Definition 4 (Closed function). A function is closed if its sublevel set is a closed set,
i.e.,

{x ∈ dom(f) : f(x) ≤ α}

is a closed set.

Counterexample. f(x) = exp(−x) is not a closed function. Observe that its
sublevel set {x ∈ dom(f) : exp(−x) ≤ α} is not closed.

1.2 The inverse of the gradient map
Theorem 3. Suppose that f(·) is closed and convex. Then, y ∈ ∂f(x) if and only if
x ∈ ∂f ∗(y).

Proof. We will only prove the ”⇒” direction, that is we will show that if y ∈ ∂f(x)

then x ∈ ∂f ∗(y). Let y ∈ ∂f(x). By the first-order characterization of convexity, for
any u ∈ Rd we have

f(u) ≥ f(x) + ⟨y, u− x⟩.

Additionally, we have

f ∗(y) = sup
u

(
⟨u, y⟩ − f(u)

)
(by definition of conjugate function) (1)

≤ sup
u
⟨u, y⟩ −

(
f(x) + ⟨y, u− x⟩

)
(by convexity) (2)

= ⟨x, y⟩ − f(x) (3)

Recall that for a convex function h(·) defined over a convex set C, a vector gx is said
to be a sub-gradient of f(·) at a point x ∈ C if for any y ∈ C

h(y) ≥ h(x) + ⟨gx, y − x⟩.

Now, for any z ∈ Rd we have

f ∗(z) ≥ ⟨z, x⟩ − f(x) (by definition of the Fenchel inequality)
= ⟨z − y, x⟩ − f(x) + ⟨y, x⟩
≥ ⟨z − y, x⟩+ f ∗(y) (by inequality (3)
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By the fact that f ∗(·) is convex (and differentiable) and by the definition of the
subgradient we have that

x ∈ ∂f ∗(y),

which concludes the proof.
To prove the other direction, we follow the same lines of the proof as above.

Specifically, we let r := f ∗ and the function r(·) is convex and closed. So we can use
the above argument for r(·) and deduce that if x ∈ ∂r(y), then y ∈ ∂r ∗(x). Then,
using the fact that if f(·) is closed and convex, then the bi-conjugate f ∗ ∗(x) is equal
to the original function f(·) itself, we can complete the proof

Question 1. What is arg supx∈dom(f)

(
y⊤x− f(x)

)
when f(·) is closed and convex ?

This is because the arg supx∈dom(f)

(
y⊤x− f(x)

)
is what makes the Fenchel inequality

becomes the equality.

Theorem 4. Let f(·) be convex. We have

f ∗(y) + f(x) = y⊤x ⇐⇒ y ∈ ∂f(x).

Proof. Let us first show that f ∗(y) + f(x) = y⊤x ⇒ y ∈ ∂f(x).

f ∗(y) = sup
x∈dom(f)

⟨y, x⟩ − f(x) (4)

≥ ⟨y, z⟩ − f(z), ∀z ∈ dom(f) (5)

Also, from f ∗(y) + f(x) = y⊤x, we have

0 = f ∗(y) + f(x)− y⊤x (6)
(5)
≥ ⟨y, z⟩ − f(z) + f(x)− ⟨y, x⟩, ∀z ∈ dom(f) (7)

Hence, rearranging the above terms, we get

f(z) ≥ f(x) + ⟨y, z − x⟩, ∀z ∈ dom(f), (8)

which by the definition of the subgradient, we can conlude the y ∈ ∂f(x).
Now let us prove the other direction y ∈ ∂f(x) ⇒ f ∗(y) + f(x) = y⊤x.
From y ∈ ∂f(x), we have

f(z) ≥ f(x) + ⟨y, z − x⟩, ∀z, x ∈ dom(f)

⇒ ⟨y, x⟩ − f(x) ≥ ⟨y, z⟩ − f(z), ∀z, x ∈ dom(f)

⇒ ⟨y, x⟩ − f(x) ≥ sup
z∈dom(f)

⟨y, z⟩ − f(z), ∀x ∈ dom(f)

= f ∗(y) (9)
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On the other hand, by the definition of the conjugate function

f ∗(y) ≥ ⟨y, x⟩ − f(x), ∀x ∈ dom(f). (10)

By combining the above, we can conclude that

f ∗(y) + f(x) = y⊤x. (11)

Now by combining Theorem 3 and Theorem 4, we know

arg sup
x∈dom(f)

(
y⊤x− f(x)

)
∈ ∂f ∗(y). (12)

and the following theorem:

Theorem 5. If f(·) is closed and convex, then the following are equivalent:

f ∗(y) + f(x) = y⊤x ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(y).

Question 2. What is arg supy∈dom(f∗)

(
y⊤x− f ∗(y)

)
when f(·) is closed and convex?

Using a similar argument as Theorem 4, we can follow the same lines of its proof
with one modification. Specifically, we let r := f ∗ and the function r(·) is convex and
closed. So we can use the above argument for r(·) and deduce that

arg sup
x∈dom(r)

(
y⊤x− r(x)

)
∈ ∂r ∗(y). (13)

Now using the fact that if f(·) is closed and convex, then the bi-conjugate f ∗ ∗(x) is
equal to the original function f(·) itself, (13) leads to

arg sup
x∈dom(f ∗)

(
y⊤x− f ∗(x)

)
∈ ∂f(y). (14)

2 Regularized Empirical Risk Minimization
If the primal problem is

min
x∈Rd

F (x), where F (x) :=
1

n

n∑
i=1

fi(x
⊤zi) +

λ

2
∥x∥22,

then the dual problem is

max
α∈Rn

D(α), where D(α) :=
1

n

n∑
i=1

−f ∗
i (−αi)−

λ

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

.
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We will show how the dual problem is derived from the primal problem. Consider the
following constrained optimization problem

min
x∈Rd

n∑
i=1

fi(θi) +
λn

2
∥x∥22

subject to ∀i, θi = z⊤i x,

where we have introduced variables
{
θi
}n
i=1

.

Step 1. Constructing the Lagrangian
The Lagrangian is formulated as

L
(
x,
{
θi
}
,
{
αi

})
=

n∑
i=1

[
fi(θi) + αi

(
θi − z⊤i x

)]
+

λn

2
∥x∥22

Step 2. Optimizing over primal variables to get the dual function
We have that

min
x,θ1−θn

n∑
i=1

(
fi(θi) + αiθi − αiz

⊤
i x
)
+

λn

2
∥x∥22

⇐⇒ min
x

n∑
i=1

(
min
θi

fi(θi) + αiθi

)
+

λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x.

Now, observe that

min
θ

q(θ) = −max
θ

(
−q(θ)

)
.

Thus, we have that(
min
θi

fi(θi) + αiθi

)
= −max

θi

[
−
(
fi(θi) + αiθi

)]
= −max

θi

[
−αiθi − fi(θi)

]
= −f ∗

i (αi) (by definition of the conjugate)

Therefore, using the above result we can rewrite

min
x,θ1−θn

n∑
i=1

(
fi(θi) + αiθi − αiz

⊤
i x
)
+

λn

2
∥x∥22

⇐⇒ min
x

n∑
i=1

(
min
θi

fi(θi) + αiθi

)
+

λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x

⇐⇒ −
n∑

i=1

f ∗
i (−αi) + min

x

λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x︸ ︷︷ ︸

q(x)

.
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Additionally, observe that

q(x) = 0 ⇔ λnx =
n∑

i=1

αizi ⇔ x =
1

λn

n∑
i=1

αizi

The equation

x =
1

λn

n∑
i=1

αizi

describes the relation between primal variables and dual variables. Using this
result we have

min
x

λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x =

λn

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

− ⟨
n∑

i=1

αizi,
1

λn

n∑
i=1

αizi⟩

=
1

2λn

∥∥∥∥∥∥
n∑

i=1

αizi

∥∥∥∥∥∥
2

2

− 1

λn

∥∥∥∥∥∥
n∑

i=1

αizi

∥∥∥∥∥∥
2

2

= − 1

2λn

∥∥∥∥∥∥
n∑

i=1

αizi

∥∥∥∥∥∥
2

2

= −λn

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

.

Plugging this in the objective we get

min
x,θ1−θn

n∑
i=1

(
fi(θi) + αiθi − αiz

⊤
i x
)
+

λn

2
∥x∥22

⇐⇒ min
x

n∑
i=1

(
min
θi

fi(θi) + αiθi

)
+

λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x

⇐⇒ −
n∑

i=1

f ∗
i (−αi) + min

x

λn

2
∥x∥22 −

n∑
i=1

αiz
⊤
i x

⇐⇒ −
n∑

i=1

f ∗
i (−αi)−

λn

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2︸ ︷︷ ︸
D(α)

.

Step 3. Solve maxα∈Rn D(α)
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3 Duality Gap
Recall from the previous section that the relation between primal variables and dual
variables is

x =
1

λn

n∑
i=1

αizi.

The duality gap is defined by

Duality gap := F
(
x (α)

)
−D (α)

Then, the primal optimality gap F (x(α)) − F∗ is bounded by the duality gap :=

F (x(α))−D(α).
Remark: This reveals the benefit of considering developing algorithms in the dual
space. Since we can obtain an upper-bound of the optimality gap on the fly during
the execution of the underlying dual algorithm. We demonstrate one of the classical
algorithms in the next section.

4 Stochastic Dual Coordinate Ascent (SDCA)

4.1 Main Idea
Consider the unconstrained optimization problem we introduced

max
α∈Rn

D(α), where D(α) :=
1

n

n∑
i=1

−f ∗
i (−αi)−

λ

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

.

Consider updating a dual variable αi ∈ Rn at a time. That is, at the k-th iteration,
we pick ik ∈ [n]. Then, we have

max
αik

− 1

n
f ∗
ik

(
−αik

)
− λ

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

αizi

∥∥∥∥∥∥
2

2

⇐⇒ max
αik

− 1

n
f ∗
ik

(
−αik

)
− λ

2

∥∥∥∥∥∥ 1

λn

n∑
i=1

α
(k−1)
i zi +

1

λn
∆αikzik

∥∥∥∥∥∥
2

2

⇐⇒ max
∆αik

− 1

n
f ∗
ik

(
−
(
α
(k−1)
ik

+∆αik

))
− λ

2

∥∥∥∥x(k−1) +
1

λn
∆αikzik

∥∥∥∥2
2

,
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where

αik = α
(k−1)
ik︸ ︷︷ ︸
fixed

+ ∆αik︸ ︷︷ ︸
variable

and

x(k−1) =
1

λn

n∑
i=1

α
(k−1)
i zi.

4.2 Algorithm
Below is a formal statement of the SDCA algorithm [3].

Algorithm 1 Stochastic Dual Coordinate Ascent (SDCA)
1: Init dual variables α(1) ∈ Rn.
2: for k = 1, 2, . . . , K do
3: Randomly pick a dual coordinate ik ∈ [n].
4: Maximizes the dual problem by updating the dual variable ik while fixing the

others

max
∆αik

− 1

n
f ∗
ik

(
−
(
α
(k−1)
ik

+∆αik

))
− λ

2

∥∥∥∥x(k−1) +
1

λn
∆αikzik

∥∥∥∥2
2

.

5: α(k) = α(k−1) +∆αikeik ∈ Rn.
6: x(k) = x(k−1) + 1

λn
∆αikzik ∈ Rd.

7: end for
8: Output: x(α(K)) := 1

λn

∑n
i=1 α

(K)
i zi .

Remark: Note that in the primal space, each primal coordinate corresponds to
a dimension of the “feature” vector; on the other hand, in the dual space, a dual
coordinate corresponds to a data point. Randomly picking up a dual coordinate to
update is about randomly choosing a sample to use for the update.

4.3 Example
Example Let us consider fi(θ) := max{0, 1 − yiθ} being the hinge loss, where yi ∈
{−1,+1}. Its conjugate function is

f ∗
i (a) =

ayi , if ayi ∈ [−1, 0],

∞ , otherwise
.
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The update of the SDCA for the hinge loss is

∆αik = yik max

0,min

(
1,

1− z⊤ikx
(k−1)yik

∥zik∥22/λn
+ α

(k−1)
ik

yik

)− α
(k−1)
ik

.

Bibliographic notes
For references on conjugate functions, please refer to Chapter 5 of Algorithms for Con-
vex Optimization by Nisheeth K. Vishnoi [1] and Chapter 5 of Convex Optimization
by Stephen Boyd and Lieven Vandenberghe.
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