DSC 211 Introduction to Optimization Winter 2024 Scribe: Merlin Chang, Marialena Sfyraki

Instructor: Jun-Kun Wang February 13, 2024

Lecture 11: Fenchel Conjugate, Dual formulation of the

 Empirical Risk Minimization, and SDCA
1 Fenchel Conjugate

Definition 1 (Fenchel Conjugate). Consider a function $f(\cdot)$, then the Fenchel Conjugate is defined to be

$$
f^{*}(y)=\sup _{x \in \operatorname{dom}(f)}\left(y^{\top} x-f(x)\right) .
$$

Claim. The conjugate function $f^{*}(y)$ is always convex, even if $f(\cdot)$ is non-convex.
Proof. Let $h_{x}(y):=y^{\top} x-f(x)$. Observe that h_{x} is an affine function of y and therefore also convex. Let $\alpha \in[0,1]$ and $y_{1}, y_{2} \in \operatorname{dom}\left(f^{*}\right)$. Then, we have

$$
\begin{aligned}
f^{*}\left((1-\alpha) y_{1}+\alpha y_{2}\right) & =\sup _{x \in \operatorname{dom}(f)} h_{x}\left((1-\alpha) y_{1}+\alpha y_{2}\right) \\
& =\sup _{x \in \operatorname{dom}(f)}(1-\alpha) h_{x}\left(y_{1}\right)+\alpha h_{x}\left(y_{2}\right) \\
& \leq(1-\alpha) \sup _{x \in \operatorname{dom}(f)} h_{x}\left(y_{1}\right)+\alpha \sup _{x \in \operatorname{dom}(f)} h_{x}\left(y_{2}\right) \\
& =(1-\alpha) f^{*}\left(y_{1}\right)+\alpha f^{*}\left(y_{2}\right) .
\end{aligned}
$$

Thus, by the zero-order characterization of convexity, we have that f^{*} is convex.

Exercise 1. $f(x)=a^{\top} x+b$.

$$
\begin{aligned}
f^{*}(y) & =\sup _{x \in \operatorname{dom}(f)}(\langle y, x\rangle-f(x)) \\
& =\sup _{x \in \operatorname{dom}(f)}(\langle y-a, x\rangle-b) \\
& =\left\{\begin{array}{l}
-b, \text { if } y=a \\
\infty, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Exercise 2. $f(x)=\frac{1}{2} x^{2}$.

$$
\begin{aligned}
f^{*}(y) & =\sup _{x \in \operatorname{dom}(f)}(\langle y, x\rangle-f(x)) \\
& =\sup _{x \in \operatorname{dom}(f)}\left(\langle y, x\rangle-\frac{1}{2} x^{2}\right)
\end{aligned}
$$

Let $h(x):=\langle y, x\rangle-\frac{1}{2} x^{2}$. Then, the maximizer of h can be found as

$$
\nabla h(x)=0 \Leftrightarrow x=y
$$

Thus,

$$
f^{*}(y)=x^{2}-\frac{1}{2} x^{2}=\frac{1}{2} x^{2}
$$

1.1 Fenchel inequality

By the definition of the conjugate function, we have the following result:
Theorem 1 (Fenchel inequality). For any x and y, we have

$$
f^{*}(y) \geq y^{\top} x-f(x)
$$

Question. When do we have the equality?

$$
f^{*}(y)+f(x)=y^{\top} x
$$

In the following, we are going to answer this equation and prove the following theorem:

Theorem 2. If $f(\cdot)$ is closed and convex, then the following are equivalent:
i. $f^{*}(y)+f(x)=y^{\top} x$.
ii. $y=\nabla f(x)$.
iii. $x=\nabla f^{*}(y)$.

Now, recall the definition of open and closed sets.
Definition 2 (Open set). A set S is open if it contains an open ball about each of its points. That is, for all $x \in S$, there exists $\epsilon>0$ such that $B_{\epsilon}(x) \subset S$.

Definition 3 (Closed set). A set S is closed if its complement is open.

We will now introduce the definition of closed functions.
Definition 4 (Closed function). A function is closed if its sublevel set is a closed set, i.e.,

$$
\{x \in \operatorname{dom}(f): f(x) \leq \alpha\}
$$

is a closed set.
Counterexample. $f(x)=\exp (-x)$ is not a closed function. Observe that its sublevel set $\{x \in \operatorname{dom}(f): \exp (-x) \leq \alpha\}$ is not closed.

1.2 The inverse of the gradient map

Theorem 3. Suppose that $f(\cdot)$ is closed and convex. Then, $y \in \partial f(x)$ if and only if $x \in \partial f^{*}(y)$.

Proof. We will only prove the " \Rightarrow " direction, that is we will show that if $y \in \partial f(x)$ then $x \in \partial f^{*}(y)$. Let $y \in \partial f(x)$. By the first-order characterization of convexity, for any $u \in \mathbb{R}^{d}$ we have

$$
f(u) \geq f(x)+\langle y, u-x\rangle .
$$

Additionally, we have

$$
\begin{array}{rlrl}
f^{*}(y) & =\sup _{u}(\langle u, y\rangle-f(u)) & & \text { (by definition of conjugate function) } \\
& \leq \sup _{u}\langle u, y\rangle-(f(x)+\langle y, u-x\rangle) & \text { (by convexity) } \\
& =\langle x, y\rangle-f(x) & & \tag{3}
\end{array}
$$

Recall that for a convex function $h(\cdot)$ defined over a convex set C, a vector g_{x} is said to be a sub-gradient of $f(\cdot)$ at a point $x \in C$ if for any $y \in C$

$$
h(y) \geq h(x)+\left\langle g_{x}, y-x\right\rangle .
$$

Now, for any $z \in \mathbb{R}^{d}$ we have

$$
\begin{array}{rlrl}
f^{*}(z) & \geq\langle z, x\rangle-f(x) & & \text { (by definition of the Fenchel inequality) } \\
& =\langle z-y, x\rangle-f(x)+\langle y, x\rangle & & \\
& \geq\langle z-y, x\rangle+f^{*}(y) & \quad \text { (by inequality (B) }
\end{array}
$$

By the fact that $f^{*}(\cdot)$ is convex (and differentiable) and by the definition of the subgradient we have that

$$
x \in \partial f^{*}(y)
$$

which concludes the proof.
To prove the other direction, we follow the same lines of the proof as above. Specifically, we let $r:=f^{*}$ and the function $r(\cdot)$ is convex and closed. So we can use the above argument for $r(\cdot)$ and deduce that if $x \in \partial r(y)$, then $y \in \partial r^{*}(x)$. Then, using the fact that if $f(\cdot)$ is closed and convex, then the bi-conjugate $f^{* *}(x)$ is equal to the original function $f(\cdot)$ itself, we can complete the proof

Question 1. What is $\arg \sup _{x \in \operatorname{dom}(f)}\left(y^{\top} x-f(x)\right)$ when $f(\cdot)$ is closed and convex ? This is because the $\arg \sup _{x \in \operatorname{dom}(f)}\left(y^{\top} x-f(x)\right)$ is what makes the Fenchel inequality becomes the equality.

Theorem 4. Let $f(\cdot)$ be convex. We have

$$
f^{*}(y)+f(x)=y^{\top} x \Longleftrightarrow y \in \partial f(x)
$$

Proof. Let us first show that $f^{*}(y)+f(x)=y^{\top} x \Rightarrow y \in \partial f(x)$.

$$
\begin{align*}
f^{*}(y) & =\sup _{x \in \operatorname{dom}(f)}\langle y, x\rangle-f(x) \tag{4}\\
& \geq\langle y, z\rangle-f(z), \quad \forall z \in \operatorname{dom}(f) \tag{5}
\end{align*}
$$

Also, from $f^{*}(y)+f(x)=y^{\top} x$, we have

$$
\begin{align*}
0 & =f^{*}(y)+f(x)-y^{\top} x \tag{6}\\
& \stackrel{(\text { (n) }}{\geq}\langle y, z\rangle-f(z)+f(x)-\langle y, x\rangle, \quad \forall z \in \operatorname{dom}(f) \tag{7}
\end{align*}
$$

Hence, rearranging the above terms, we get

$$
\begin{equation*}
f(z) \geq f(x)+\langle y, z-x\rangle, \quad \forall z \in \operatorname{dom}(f) \tag{8}
\end{equation*}
$$

which by the definition of the subgradient, we can conlude the $y \in \partial f(x)$.
Now let us prove the other direction $y \in \partial f(x) \Rightarrow f^{*}(y)+f(x)=y^{\top} x$.
From $y \in \partial f(x)$, we have

$$
\begin{align*}
f(z) & \geq f(x)+\langle y, z-x\rangle, \forall z, x \in \operatorname{dom}(f) \\
\Rightarrow\langle y, x\rangle-f(x) & \geq\langle y, z\rangle-f(z), \forall z, x \in \operatorname{dom}(f) \\
\Rightarrow\langle y, x\rangle-f(x) & \geq \sup _{z \in \operatorname{dom}(f)}\langle y, z\rangle-f(z), \quad \forall x \in \operatorname{dom}(f) \\
& =f^{*}(y) \tag{9}
\end{align*}
$$

On the other hand, by the definition of the conjugate function

$$
\begin{equation*}
f^{*}(y) \geq\langle y, x\rangle-f(x), \forall x \in \operatorname{dom}(f) \tag{10}
\end{equation*}
$$

By combining the above, we can conclude that

$$
\begin{equation*}
f^{*}(y)+f(x)=y^{\top} x \tag{11}
\end{equation*}
$$

Now by combining Theorem 3 and Theorem 四, we know

$$
\begin{equation*}
\arg \sup _{x \in \operatorname{dom}(f)}\left(y^{\top} x-f(x)\right) \in \partial f^{*}(y) . \tag{12}
\end{equation*}
$$

and the following theorem:
Theorem 5. If $f(\cdot)$ is closed and convex, then the following are equivalent:

$$
f^{*}(y)+f(x)=y^{\top} x \Longleftrightarrow y \in \partial f(x) \Longleftrightarrow x \in \partial f^{*}(y) .
$$

Question 2. What is $\arg \sup _{y \in \operatorname{dom}\left(f^{*}\right)}\left(y^{\top} x-f^{*}(y)\right)$ when $f(\cdot)$ is closed and convex?
Using a similar argument as Theorem 四, we can follow the same lines of its proof with one modification. Specifically, we let $r:=f^{*}$ and the function $r(\cdot)$ is convex and closed. So we can use the above argument for $r(\cdot)$ and deduce that

$$
\begin{equation*}
\arg \sup _{x \in \operatorname{dom}(r)}\left(y^{\top} x-r(x)\right) \in \partial r^{*}(y) \tag{13}
\end{equation*}
$$

Now using the fact that if $f(\cdot)$ is closed and convex, then the bi-conjugate $f^{* *}(x)$ is equal to the original function $f(\cdot)$ itself, ([ए3) leads to

$$
\begin{equation*}
\arg \sup _{x \in \operatorname{dom}\left(f^{*}\right)}\left(y^{\top} x-f^{*}(x)\right) \in \partial f(y) . \tag{14}
\end{equation*}
$$

2 Regularized Empirical Risk Minimization

If the primal problem is

$$
\min _{x \in \mathbb{R}^{d}} F(x), \quad \text { where } F(x):=\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(x^{\top} z_{i}\right)+\frac{\lambda}{2}\|x\|_{2}^{2},
$$

then the dual problem is

$$
\max _{\alpha \in \mathbb{R}^{n}} D(\alpha), \quad \text { where } D(\alpha):=\frac{1}{n} \sum_{i=1}^{n}-f_{i}^{*}\left(-\alpha_{i}\right)-\frac{\lambda}{2}\left\|\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i}\right\|_{2}^{2}
$$

We will show how the dual problem is derived from the primal problem. Consider the following constrained optimization problem

$$
\begin{aligned}
& \min _{x \in \mathbb{R}^{d}} \sum_{i=1}^{n} f_{i}\left(\theta_{i}\right)+\frac{\lambda n}{2}\|x\|_{2}^{2} \\
& \text { subject to } \forall i, \theta_{i}=z_{i}^{\top} x,
\end{aligned}
$$

where we have introduced variables $\left\{\theta_{i}\right\}_{i=1}^{n}$.

Step 1. Constructing the Lagrangian

The Lagrangian is formulated as

$$
L\left(x,\left\{\theta_{i}\right\},\left\{\alpha_{i}\right\}\right)=\sum_{i=1}^{n}\left[f_{i}\left(\theta_{i}\right)+\alpha_{i}\left(\theta_{i}-z_{i}^{\top} x\right)\right]+\frac{\lambda n}{2}\|x\|_{2}^{2}
$$

Step 2. Optimizing over primal variables to get the dual function

We have that

$$
\begin{aligned}
\min _{x, \theta_{1}-\theta_{n}} & \sum_{i=1}^{n}\left(f_{i}\left(\theta_{i}\right)+\alpha_{i} \theta_{i}-\alpha_{i} z_{i}^{\top} x\right)+\frac{\lambda n}{2}\|x\|_{2}^{2} \\
& \Longleftrightarrow \min _{x} \sum_{i=1}^{n}\left(\min _{\theta_{i}} f_{i}\left(\theta_{i}\right)+\alpha_{i} \theta_{i}\right)+\frac{\lambda n}{2}\|x\|_{2}^{2}-\sum_{i=1}^{n} \alpha_{i} z_{i}^{\top} x
\end{aligned}
$$

Now, observe that

$$
\min _{\theta} q(\theta)=-\max _{\theta}(-q(\theta)) .
$$

Thus, we have that

$$
\begin{aligned}
\left(\min _{\theta_{i}} f_{i}\left(\theta_{i}\right)+\alpha_{i} \theta_{i}\right) & =-\max _{\theta_{i}}\left[-\left(f_{i}\left(\theta_{i}\right)+\alpha_{i} \theta_{i}\right)\right] \\
& =-\max _{\theta_{i}}\left[-\alpha_{i} \theta_{i}-f_{i}\left(\theta_{i}\right)\right]
\end{aligned}
$$

$$
=-f_{i}^{*}\left(\alpha_{i}\right) \quad(\text { by definition of the conjugate })
$$

Therefore, using the above result we can rewrite

$$
\begin{aligned}
\min _{x, \theta_{1}-\theta_{n}} & \sum_{i=1}^{n}\left(f_{i}\left(\theta_{i}\right)+\alpha_{i} \theta_{i}-\alpha_{i} z_{i}^{\top} x\right)+\frac{\lambda n}{2}\|x\|_{2}^{2} \\
& \Longleftrightarrow \min _{x} \sum_{i=1}^{n}\left(\min _{\theta_{i}} f_{i}\left(\theta_{i}\right)+\alpha_{i} \theta_{i}\right)+\frac{\lambda n}{2}\|x\|_{2}^{2}-\sum_{i=1}^{n} \alpha_{i} z_{i}^{\top} x \\
& \Longleftrightarrow-\sum_{i=1}^{n} f_{i}^{*}\left(-\alpha_{i}\right)+\min _{x} \underbrace{\frac{\lambda n}{2}\|x\|_{2}^{2}-\sum_{i=1}^{n} \alpha_{i} z_{i}^{\top} x}_{q(x)}
\end{aligned}
$$

Additionally, observe that

$$
q(x)=0 \Leftrightarrow \lambda n x=\sum_{i=1}^{n} \alpha_{i} z_{i} \Leftrightarrow x=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i}
$$

The equation

$$
x=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i}
$$

describes the relation between primal variables and dual variables. Using this result we have

$$
\begin{aligned}
\min _{x} \frac{\lambda n}{2}\|x\|_{2}^{2}-\sum_{i=1}^{n} \alpha_{i} z_{i}^{\top} x & =\frac{\lambda n}{2}\left\|\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i}\right\|_{2}^{2}-\left\langle\sum_{i=1}^{n} \alpha_{i} z_{i}, \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i}\right\rangle \\
& =\frac{1}{2 \lambda n}\left\|\sum_{i=1}^{n} \alpha_{i} z_{i}\right\|_{2}^{2}-\frac{1}{\lambda n}\left\|\sum_{i=1}^{n} \alpha_{i} z_{i}\right\|_{2}^{2} \\
& =-\frac{1}{2 \lambda n}\left\|\sum_{i=1}^{n} \alpha_{i} z_{i}\right\|_{2}^{2} \\
& =-\frac{\lambda n}{2}\left\|\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i}\right\|_{2}^{2}
\end{aligned}
$$

Plugging this in the objective we get

$$
\begin{aligned}
\min _{x, \theta_{1}-\theta_{n}} & \sum_{i=1}^{n}\left(f_{i}\left(\theta_{i}\right)+\alpha_{i} \theta_{i}-\alpha_{i} z_{i}^{\top} x\right)+\frac{\lambda n}{2}\|x\|_{2}^{2} \\
& \Longleftrightarrow \min _{x} \sum_{i=1}^{n}\left(\min _{\theta_{i}} f_{i}\left(\theta_{i}\right)+\alpha_{i} \theta_{i}\right)+\frac{\lambda n}{2}\|x\|_{2}^{2}-\sum_{i=1}^{n} \alpha_{i} z_{i}^{\top} x \\
& \Longleftrightarrow-\sum_{i=1}^{n} f_{i}^{*}\left(-\alpha_{i}\right)+\min _{x} \frac{\lambda n}{2}\|x\|_{2}^{2}-\sum_{i=1}^{n} \alpha_{i} z_{i}^{\top} x \\
& \Longleftrightarrow \underbrace{-\sum_{i=1}^{n} f_{i}^{*}\left(-\alpha_{i}\right)-\frac{\lambda n}{2}\left\|\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i}\right\|_{2}^{2}}_{D(\alpha)}
\end{aligned}
$$

Step 3. Solve $\max _{\alpha \in \mathbb{R}^{n}} D(\alpha)$

3 Duality Gap

Recall from the previous section that the relation between primal variables and dual variables is

$$
x=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i} .
$$

The duality gap is defined by

$$
\text { Duality gap }:=F(x(\alpha))-D(\alpha)
$$

Then, the primal optimality gap $F(x(\alpha))-F_{*}$ is bounded by the duality gap := $F(x(\alpha))-D(\alpha)$.
Remark: This reveals the benefit of considering developing algorithms in the dual space. Since we can obtain an upper-bound of the optimality gap on the fly during the execution of the underlying dual algorithm. We demonstrate one of the classical algorithms in the next section.

4 Stochastic Dual Coordinate Ascent (SDCA)

4.1 Main Idea

Consider the unconstrained optimization problem we introduced

$$
\max _{\alpha \in \mathbb{R}^{n}} D(\alpha), \quad \text { where } D(\alpha):=\frac{1}{n} \sum_{i=1}^{n}-f_{i}^{*}\left(-\alpha_{i}\right)-\frac{\lambda}{2}\left\|\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i}\right\|_{2}^{2}
$$

Consider updating a dual variable $\alpha_{i} \in \mathbb{R}^{n}$ at a time. That is, at the k-th iteration, we pick $i_{k} \in[n]$. Then, we have

$$
\begin{aligned}
& \max _{\alpha_{i_{k}}}-\frac{1}{n} f_{i_{k}}^{*}\left(-\alpha_{i_{k}}\right)-\frac{\lambda}{2}\left\|\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i}\right\|_{2}^{2} \\
& \Longleftrightarrow \max _{\alpha_{i_{k}}}-\frac{1}{n} f_{i_{k}}^{*}\left(-\alpha_{i_{k}}\right)-\frac{\lambda}{2}\left\|\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i}^{(k-1)} z_{i}+\frac{1}{\lambda n} \Delta \alpha_{i_{k}} z_{i_{k}}\right\|_{2}^{2} \\
& \Longleftrightarrow \max _{\Delta \alpha_{i_{k}}}-\frac{1}{n} f_{i_{k}}^{*}\left(-\left(\alpha_{i_{k}}^{(k-1)}+\Delta \alpha_{i_{k}}\right)\right)-\frac{\lambda}{2}\left\|x^{(k-1)}+\frac{1}{\lambda n} \Delta \alpha_{i_{k}} z_{i_{k}}\right\|_{2}^{2},
\end{aligned}
$$

where

$$
\alpha_{i_{k}}=\underbrace{\alpha_{i_{k}}^{(k-1)}}_{\text {fixed }}+\underbrace{\Delta \alpha_{i_{k}}}_{\text {variable }}
$$

and

$$
x^{(k-1)}=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i}^{(k-1)} z_{i} .
$$

4.2 Algorithm

Below is a formal statement of the SDCA algorithm [3].

```
Algorithm 1 Stochastic Dual Coordinate Ascent (SDCA)
    Init dual variables \(\alpha^{(1)} \in \mathbb{R}^{n}\).
    for \(k=1,2, \ldots, K\) do
        Randomly pick a dual coordinate \(i_{k} \in[n]\).
        Maximizes the dual problem by updating the dual variable \(i_{k}\) while fixing the
        others
            \(\max _{\Delta \alpha_{i_{k}}}-\frac{1}{n} f_{i_{k}}^{*}\left(-\left(\alpha_{i_{k}}^{(k-1)}+\Delta \alpha_{i_{k}}\right)\right)-\frac{\lambda}{2}\left\|x^{(k-1)}+\frac{1}{\lambda n} \Delta \alpha_{i_{k}} z_{i_{k}}\right\|_{2}^{2}\).
        \(\alpha^{(k)}=\alpha^{(k-1)}+\Delta \alpha_{i_{k}} e_{i_{k}} \in \mathbb{R}^{n}\).
        \(x^{(k)}=x^{(k-1)}+\frac{1}{\lambda n} \Delta \alpha_{i_{k}} z_{i_{k}} \in \mathbb{R}^{d}\).
    end for
    Output: \(x\left(\alpha^{(K)}\right):=\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i}^{(K)} z_{i}\).
```

Remark: Note that in the primal space, each primal coordinate corresponds to a dimension of the "feature" vector; on the other hand, in the dual space, a dual coordinate corresponds to a data point. Randomly picking up a dual coordinate to update is about randomly choosing a sample to use for the update.

4.3 Example

Example Let us consider $f_{i}(\theta):=\max \left\{0,1-y_{i} \theta\right\}$ being the hinge loss, where $y_{i} \in$ $\{-1,+1\}$. Its conjugate function is

$$
f_{i}^{*}(a)= \begin{cases}a y_{i} & , \text { if } a y_{i} \in[-1,0] \\ \infty & , \text { otherwise }\end{cases}
$$

The update of the SDCA for the hinge loss is

$$
\Delta \alpha_{i_{k}}=y_{i_{k}} \max \left(0, \min \left(1, \frac{1-z_{i_{k}}^{\top} x^{(k-1)} y_{i_{k}}}{\left\|z_{i_{k}}\right\|_{2}^{2} / \lambda n}+\alpha_{i_{k}}^{(k-1)} y_{i_{k}}\right)\right)-\alpha_{i_{k}}^{(k-1)}
$$

Bibliographic notes

For references on conjugate functions, please refer to Chapter 5 of Algorithms for Convex Optimization by Nisheeth K. Vishnoi [[] and Chapter 5 of Convex Optimization by Stephen Boyd and Lieven Vandenberghe.

References

[1] Nisheeth K. Vishnoi. Algorithms for Convex Optimization. Cambridge University Press, 2021.
[2] Stephen Boyd and Lieven Vandenberghe, Convex Optimization Cambridge University Press, 2004.
[3] Rie Johnson and Tong Zhang Accelerating Stochastic Gradient Descent using Predictive Variance Reduction. NeurIPS 2013.

