DSC 211 Introduction to Optimization Winter 2024 Instructor: Jun-Kun Wang Scribe: Merlin Chang, Marialena Sfyraki February 13, 2024

Lecture 11: Fenchel Conjugate, Dual formulation of the Empirical Risk Minimization, and SDCA

1 Fenchel Conjugate

Definition 1 (Fenchel Conjugate). Consider a function $f(\cdot)$, then the Fenchel Conjugate is defined to be

$$f^*(y) = \sup_{x \in \operatorname{dom}(f)} \left(y^\top x - f(x) \right).$$

Claim. The conjugate function $f^*(y)$ is always convex, even if $f(\cdot)$ is non-convex.

Proof. Let $h_x(y) := y^{\top}x - f(x)$. Observe that h_x is an affine function of y and therefore also convex. Let $\alpha \in [0, 1]$ and $y_1, y_2 \in \text{dom}(f^*)$. Then, we have

$$f^* \left((1-\alpha)y_1 + \alpha y_2 \right) = \sup_{x \in \operatorname{dom}(f)} h_x \left((1-\alpha)y_1 + \alpha y_2 \right)$$
$$= \sup_{x \in \operatorname{dom}(f)} (1-\alpha)h_x \left(y_1 \right) + \alpha h_x \left(y_2 \right)$$
$$\leq (1-\alpha) \sup_{x \in \operatorname{dom}(f)} h_x \left(y_1 \right) + \alpha \sup_{x \in \operatorname{dom}(f)} h_x \left(y_2 \right)$$
$$= (1-\alpha)f^* \left(y_1 \right) + \alpha f^* \left(y_2 \right).$$

Thus, by the zero-order characterization of convexity, we have that f^* is convex. \Box

Exercise 1. $f(x) = a^{\top}x + b$.

$$f^{*}(y) = \sup_{\substack{x \in \text{dom}(f)}} \left(\langle y, x \rangle - f(x) \right)$$
$$= \sup_{\substack{x \in \text{dom}(f)}} \left(\langle y - a, x \rangle - b \right)$$
$$= \begin{cases} -b & \text{, if } y = a \\ \infty & \text{, otherwise} \end{cases}.$$

Exercise 2. $f(x) = \frac{1}{2}x^2$.

$$f^{*}(y) = \sup_{x \in \text{dom}(f)} \left(\langle y, x \rangle - f(x) \right)$$
$$= \sup_{x \in \text{dom}(f)} \left(\langle y, x \rangle - \frac{1}{2}x^{2} \right)$$

Let $h(x) := \langle y, x \rangle - \frac{1}{2}x^2$. Then, the maximizer of h can be found as

$$\nabla h(x) = 0 \iff x = y$$

Thus,

$$f^{*}(y) = x^{2} - \frac{1}{2}x^{2} = \frac{1}{2}x^{2}$$

1.1 Fenchel inequality

By the definition of the conjugate function, we have the following result:

Theorem 1 (Fenchel inequality). For any x and y, we have

$$f^*(y) \ge y^\top x - f(x).$$

Question. When do we have the equality?

$$f^*(y) + f(x) = y^\top x$$

In the following, we are going to answer this equation and prove the following theorem:

Theorem 2. If $f(\cdot)$ is closed and convex, then the following are equivalent:

 $i. f^*(y) + f(x) = y^\top x.$ $ii. y = \nabla f(x).$ $iii. x = \nabla f^*(y).$

Now, recall the definition of open and closed sets.

Definition 2 (Open set). A set S is open if it contains an open ball about each of its points. That is, for all $x \in S$, there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subset S$.

Definition 3 (Closed set). A set S is closed if its complement is open.

We will now introduce the definition of closed functions.

Definition 4 (Closed function). A function is closed if its sublevel set is a closed set, *i.e.*,

$$\{x \in dom(f) : f(x) \le \alpha\}$$

is a closed set.

Counterexample. $f(x) = \exp(-x)$ is not a closed function. Observe that its sublevel set $\{x \in \operatorname{dom}(f) : \exp(-x) \le \alpha\}$ is not closed.

1.2 The inverse of the gradient map

Theorem 3. Suppose that $f(\cdot)$ is closed and convex. Then, $y \in \partial f(x)$ if and only if $x \in \partial f^*(y)$.

Proof. We will only prove the " \Rightarrow " direction, that is we will show that if $y \in \partial f(x)$ then $x \in \partial f^*(y)$. Let $y \in \partial f(x)$. By the first-order characterization of convexity, for any $u \in \mathbb{R}^d$ we have

$$f(u) \ge f(x) + \langle y, u - x \rangle$$

Additionally, we have

$$f^*(y) = \sup_{u} (\langle u, y \rangle - f(u))$$
 (by definition of conjugate function) (1)

$$\leq \sup_{u} \langle u, y \rangle - \left(f(x) + \langle y, u - x \rangle \right) \quad \text{(by convexity)} \tag{2}$$

$$= \langle x, y \rangle - f(x) \tag{3}$$

Recall that for a convex function $h(\cdot)$ defined over a convex set C, a vector g_x is said to be a sub-gradient of $f(\cdot)$ at a point $x \in C$ if for any $y \in C$

$$h(y) \ge h(x) + \langle g_x, y - x \rangle.$$

Now, for any $z \in \mathbb{R}^d$ we have

$$f^{*}(z) \geq \langle z, x \rangle - f(x)$$
 (by definition of the Fenchel inequality)
$$= \langle z - y, x \rangle - f(x) + \langle y, x \rangle$$

$$\geq \langle z - y, x \rangle + f^{*}(y)$$
 (by inequality (3)

By the fact that $f^*(\cdot)$ is convex (and differentiable) and by the definition of the subgradient we have that

$$x \in \partial f^*(y),$$

which concludes the proof.

To prove the other direction, we follow the same lines of the proof as above. Specifically, we let $r := f^*$ and the function $r(\cdot)$ is convex and closed. So we can use the above argument for $r(\cdot)$ and deduce that if $x \in \partial r(y)$, then $y \in \partial r^*(x)$. Then, using the fact that if $f(\cdot)$ is closed and convex, then the bi-conjugate $f^{**}(x)$ is equal to the original function $f(\cdot)$ itself, we can complete the proof

Question 1. What is $\arg \sup_{x \in \operatorname{dom}(f)} (y^{\top}x - f(x))$ when $f(\cdot)$ is closed and convex ? This is because the $\arg \sup_{x \in \operatorname{dom}(f)} (y^{\top}x - f(x))$ is what makes the Fenchel inequality becomes the equality.

Theorem 4. Let $f(\cdot)$ be convex. We have

$$f^*(y) + f(x) = y^{\top}x \iff y \in \partial f(x).$$

Proof. Let us first show that $f^*(y) + f(x) = y^{\top}x \Rightarrow y \in \partial f(x)$.

$$f^*(y) = \sup_{x \in \operatorname{dom}(f)} \langle y, x \rangle - f(x) \tag{4}$$

$$\geq \langle y, z \rangle - f(z), \quad \forall z \in \operatorname{dom}(f)$$
 (5)

Also, from $f^*(y) + f(x) = y^{\top} x$, we have

$$0 = f^*(y) + f(x) - y^{\top}x$$
(6)

$$\stackrel{(5)}{\geq} \langle y, z \rangle - f(z) + f(x) - \langle y, x \rangle, \quad \forall z \in \operatorname{dom}(f)$$
(7)

Hence, rearranging the above terms, we get

$$f(z) \ge f(x) + \langle y, z - x \rangle, \quad \forall z \in \operatorname{dom}(f),$$
(8)

which by the definition of the subgradient, we can conclude the $y \in \partial f(x)$.

Now let us prove the other direction $y \in \partial f(x) \Rightarrow f^*(y) + f(x) = y^{\top} x$.

From $y \in \partial f(x)$, we have

$$f(z) \ge f(x) + \langle y, z - x \rangle, \forall z, x \in \text{dom}(f)$$

$$\Rightarrow \langle y, x \rangle - f(x) \ge \langle y, z \rangle - f(z), \forall z, x \in \text{dom}(f)$$

$$\Rightarrow \langle y, x \rangle - f(x) \ge \sup_{z \in \text{dom}(f)} \langle y, z \rangle - f(z), \quad \forall x \in \text{dom}(f)$$

$$= f^*(y)$$
(9)

On the other hand, by the definition of the conjugate function

$$f^*(y) \ge \langle y, x \rangle - f(x), \forall x \in \operatorname{dom}(f).$$
 (10)

By combining the above, we can conclude that

$$f^*(y) + f(x) = y^{\top} x.$$
 (11)

Now by combining Theorem 3 and Theorem 4, we know

$$\arg \sup_{x \in \operatorname{dom}(f)} \left(y^{\top} x - f(x) \right) \in \partial f^*(y).$$
(12)

and the following theorem:

Theorem 5. If $f(\cdot)$ is closed and convex, then the following are equivalent:

$$f^*(y) + f(x) = y^{\top}x \iff y \in \partial f(x) \iff x \in \partial f^*(y).$$

Question 2. What is $\arg \sup_{y \in \operatorname{dom}(f^*)} (y^\top x - f^*(y))$ when $f(\cdot)$ is closed and convex?

Using a similar argument as Theorem 4, we can follow the same lines of its proof with one modification. Specifically, we let $r := f^*$ and the function $r(\cdot)$ is convex and closed. So we can use the above argument for $r(\cdot)$ and deduce that

$$\arg \sup_{x \in \operatorname{dom}(r)} \left(y^{\top} x - r(x) \right) \in \partial r^{*}(y).$$
(13)

Now using the fact that if $f(\cdot)$ is closed and convex, then the bi-conjugate $f^{**}(x)$ is equal to the original function $f(\cdot)$ itself, (13) leads to

$$\arg \sup_{x \in \operatorname{dom}(f^*)} \left(y^\top x - f^*(x) \right) \in \partial f(y).$$
(14)

2 Regularized Empirical Risk Minimization

If the primal problem is

$$\min_{x \in \mathbb{R}^d} F(x), \quad \text{where } F(x) := \frac{1}{n} \sum_{i=1}^n f_i(x^\top z_i) + \frac{\lambda}{2} \|x\|_2^2,$$

then the dual problem is

$$\max_{\alpha \in \mathbb{R}^n} D(\alpha), \quad \text{where } D(\alpha) \coloneqq \frac{1}{n} \sum_{i=1}^n -f_i^* \left(-\alpha_i\right) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i z_i \right\|_2^2.$$

We will show how the dual problem is derived from the primal problem. Consider the following constrained optimization problem

$$\min_{x \in \mathbb{R}^d} \sum_{i=1}^n f_i(\theta_i) + \frac{\lambda n}{2} ||x||_2^2$$

subject to $\forall i, \theta_i = z_i^\top x$,

where we have introduced variables $\{\theta_i\}_{i=1}^n$.

Step 1. Constructing the Lagrangian

The Lagrangian is formulated as

$$L\left(x,\left\{\theta_{i}\right\},\left\{\alpha_{i}\right\}\right) = \sum_{i=1}^{n} \left[f_{i}(\theta_{i}) + \alpha_{i}\left(\theta_{i} - z_{i}^{\top}x\right)\right] + \frac{\lambda n}{2} \|x\|_{2}^{2}$$

Step 2. Optimizing over primal variables to get the dual function We have that

$$\min_{x,\theta_1-\theta_n} \sum_{i=1}^n \left(f_i(\theta_i) + \alpha_i \theta_i - \alpha_i z_i^\top x \right) + \frac{\lambda n}{2} \|x\|_2^2$$
$$\iff \min_x \sum_{i=1}^n \left(\min_{\theta_i} f_i(\theta_i) + \alpha_i \theta_i \right) + \frac{\lambda n}{2} \|x\|_2^2 - \sum_{i=1}^n \alpha_i z_i^\top x.$$

Now, observe that

$$\min_{\theta} q(\theta) = -\max_{\theta} \left(-q(\theta) \right).$$

Thus, we have that

$$\begin{pmatrix} \min_{\theta_i} f_i(\theta_i) + \alpha_i \theta_i \end{pmatrix} = -\max_{\theta_i} \left[-\left(f_i(\theta_i) + \alpha_i \theta_i \right) \right]$$

= $-\max_{\theta_i} \left[-\alpha_i \theta_i - f_i(\theta_i) \right]$
= $-f_i^*(\alpha_i)$ (by definition of the conjugate)

Therefore, using the above result we can rewrite

$$\min_{x,\theta_1-\theta_n} \sum_{i=1}^n \left(f_i(\theta_i) + \alpha_i \theta_i - \alpha_i z_i^\top x \right) + \frac{\lambda n}{2} \|x\|_2^2$$

$$\iff \min_x \sum_{i=1}^n \left(\min_{\theta_i} f_i(\theta_i) + \alpha_i \theta_i \right) + \frac{\lambda n}{2} \|x\|_2^2 - \sum_{i=1}^n \alpha_i z_i^\top x$$

$$\iff -\sum_{i=1}^n f_i^*(-\alpha_i) + \min_x \underbrace{\frac{\lambda n}{2} \|x\|_2^2 - \sum_{i=1}^n \alpha_i z_i^\top x}_{q(x)}.$$

Additionally, observe that

$$q(x) = 0 \iff \lambda n x = \sum_{i=1}^{n} \alpha_i z_i \iff x = \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_i z_i$$

The equation

$$x = \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_i z_i$$

describes the **relation between primal variables and dual variables**. Using this result we have

$$\begin{split} \min_{x} \frac{\lambda n}{2} \|x\|_{2}^{2} &- \sum_{i=1}^{n} \alpha_{i} z_{i}^{\top} x = \frac{\lambda n}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i} \right\|_{2}^{2} - \left\langle \sum_{i=1}^{n} \alpha_{i} z_{i}, \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i} \right\rangle \\ &= \frac{1}{2\lambda n} \left\| \sum_{i=1}^{n} \alpha_{i} z_{i} \right\|_{2}^{2} - \frac{1}{\lambda n} \left\| \sum_{i=1}^{n} \alpha_{i} z_{i} \right\|_{2}^{2} \\ &= -\frac{1}{2\lambda n} \left\| \sum_{i=1}^{n} \alpha_{i} z_{i} \right\|_{2}^{2} \\ &= -\frac{\lambda n}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} z_{i} \right\|_{2}^{2}. \end{split}$$

Plugging this in the objective we get

$$\min_{x,\theta_1-\theta_n} \sum_{i=1}^n \left(f_i(\theta_i) + \alpha_i \theta_i - \alpha_i z_i^\top x \right) + \frac{\lambda n}{2} \|x\|_2^2$$

$$\iff \min_x \sum_{i=1}^n \left(\min_{\theta_i} f_i(\theta_i) + \alpha_i \theta_i \right) + \frac{\lambda n}{2} \|x\|_2^2 - \sum_{i=1}^n \alpha_i z_i^\top x$$

$$\iff -\sum_{i=1}^n f_i^*(-\alpha_i) + \min_x \frac{\lambda n}{2} \|x\|_2^2 - \sum_{i=1}^n \alpha_i z_i^\top x$$

$$\iff -\sum_{i=1}^n f_i^*(-\alpha_i) - \frac{\lambda n}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i z_i \right\|_2^2.$$

$$\underbrace{D(\alpha)} D(\alpha)$$

Step 3. Solve $\max_{\alpha \in \mathbb{R}^n} D(\alpha)$

3 Duality Gap

Recall from the previous section that the relation between primal variables and dual variables is

$$x = \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_i z_i.$$

The duality gap is defined by

Duality gap :=
$$F(x(\alpha)) - D(\alpha)$$

Then, the primal optimality gap $F(x(\alpha)) - F_*$ is bounded by the duality gap := $F(x(\alpha)) - D(\alpha)$.

Remark: This reveals the benefit of considering developing algorithms in the dual space. Since we can obtain an upper-bound of the optimality gap on the fly during the execution of the underlying dual algorithm. We demonstrate one of the classical algorithms in the next section.

4 Stochastic Dual Coordinate Ascent (SDCA)

4.1 Main Idea

Consider the unconstrained optimization problem we introduced

$$\max_{\alpha \in \mathbb{R}^n} D(\alpha), \quad \text{where } D(\alpha) := \frac{1}{n} \sum_{i=1}^n -f_i^* \left(-\alpha_i\right) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i z_i \right\|_2^2.$$

Consider updating a dual variable $\alpha_i \in \mathbb{R}^n$ at a time. That is, at the k-th iteration, we pick $i_k \in [n]$. Then, we have

$$\begin{aligned} \max_{\alpha_{i_k}} &-\frac{1}{n} f_{i_k}^* \left(-\alpha_{i_k}\right) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i z_i \right\|_2^2 \\ \iff \max_{\alpha_{i_k}} &-\frac{1}{n} f_{i_k}^* \left(-\alpha_{i_k}\right) - \frac{\lambda}{2} \left\| \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i^{(k-1)} z_i + \frac{1}{\lambda n} \Delta \alpha_{i_k} z_{i_k} \right\|_2^2 \\ \iff \max_{\Delta \alpha_{i_k}} &-\frac{1}{n} f_{i_k}^* \left(- \left(\alpha_{i_k}^{(k-1)} + \Delta \alpha_{i_k} \right) \right) - \frac{\lambda}{2} \left\| x^{(k-1)} + \frac{1}{\lambda n} \Delta \alpha_{i_k} z_{i_k} \right\|_2^2, \end{aligned}$$

where

$$\alpha_{i_k} = \underbrace{\alpha_{i_k}^{(k-1)}}_{\text{fixed}} + \underbrace{\Delta \alpha_{i_k}}_{\text{variable}}$$

and

$$x^{(k-1)} = \frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_i^{(k-1)} z_i.$$

4.2 Algorithm

Below is a formal statement of the SDCA algorithm [3].

Algorithm 1 Stochastic Dual Coordinate Ascent (SDCA)

1: Init dual variables $\alpha^{(1)} \in \mathbb{R}^n$.

2: for k = 1, 2, ..., K do

- 3: Randomly pick a dual coordinate $i_k \in [n]$.
- 4: Maximizes the dual problem by updating the dual variable i_k while fixing the others

$$\max_{\Delta\alpha_{i_k}} -\frac{1}{n} f_{i_k}^* \left(-\left(\alpha_{i_k}^{(k-1)} + \Delta\alpha_{i_k}\right)\right) - \frac{\lambda}{2} \left\| x^{(k-1)} + \frac{1}{\lambda n} \Delta\alpha_{i_k} z_{i_k} \right\|_2^2$$

5: $\alpha^{(k)} = \alpha^{(k-1)} + \Delta \alpha_{i_k} e_{i_k} \in \mathbb{R}^n.$ 6: $x^{(k)} = x^{(k-1)} + \frac{1}{\lambda n} \Delta \alpha_{i_k} z_{i_k} \in \mathbb{R}^d.$ 7: **end for** 8: Output: $x(\alpha^{(K)}) := \frac{1}{\lambda n} \sum_{i=1}^n \alpha_i^{(K)} z_i.$

Remark: Note that in the primal space, each primal coordinate corresponds to a dimension of the "feature" vector; on the other hand, in the dual space, a dual coordinate corresponds to a data point. Randomly picking up a dual coordinate to update is about randomly choosing a sample to use for the update.

4.3 Example

Example Let us consider $f_i(\theta) := \max\{0, 1 - y_i\theta\}$ being the hinge loss, where $y_i \in \{-1, +1\}$. Its conjugate function is

$$f_i^*(a) = \begin{cases} ay_i & \text{, if } ay_i \in [-1, 0], \\ \infty & \text{, otherwise} \end{cases}$$

The update of the SDCA for the hinge loss is

$$\Delta \alpha_{i_k} = y_{i_k} \max\left(0, \min\left(1, \frac{1 - z_{i_k}^\top x^{(k-1)} y_{i_k}}{\|z_{i_k}\|_2^2 / \lambda n} + \alpha_{i_k}^{(k-1)} y_{i_k}\right)\right) - \alpha_{i_k}^{(k-1)}.$$

Bibliographic notes

For references on conjugate functions, please refer to Chapter 5 of Algorithms for Convex Optimization by Nisheeth K. Vishnoi [1] and Chapter 5 of Convex Optimization by Stephen Boyd and Lieven Vandenberghe.

References

- Nisheeth K. Vishnoi. Algorithms for Convex Optimization. Cambridge University Press, 2021.
- [2] Stephen Boyd and Lieven Vandenberghe, Convex Optimization Cambridge University Press, 2004.
- [3] Rie Johnson and Tong Zhang Accelerating Stochastic Gradient Descent using Predictive Variance Reduction. NeurIPS 2013.