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Lecture 10: Kahn-Karush-Tucker Optimality Conditions

1 Duality Theory Cont’d

Recall that we are tying to find the minimizer of a function subject to constrains,
where

inf f(x)
st. fi(z) <0, j=1,...,m. (1)
s.t. affine h;(x) =0, i=1,...,p.

We have the following definitions:

Definition 1. (Lagrangian)
Lz, A p) = f@)+ ) Nfi(@) + > pihi(e). (2)
j=1 i=1

Definition 2. (Dual function)
g\, p) = inf Lz, A, p) (3)
Definition 3. (Dual Problem)

sup g(A, i) (4)
A>0,u

Definition 4. (Strong Duality) Strong duality means that there’s no duality gap
between the primal and the dual, in other words,

S A, ) = inf .
sup 9(A ) = Inf /()

Definition 5. (Slater condition) Slater’s condition outlines a sufficient condi-
tion for strong duality to hold. Namely, if

o The primal problem is convex;

o The primal problem has a strictly feasible point, & such that all the inequality
constraints defining C' are strict at =, i.e., f;(z) < 0,Yj € [m], and h;(z) =
0,Vi € [p].



then, strong duality holds, which implies:

d* = sup g(\, p) = inf f(z) =p".
A>050 zeC

Remark. For linear programs, namely in the forms of:

minc'x

T

st.Ax <b

strong duality holds if either primal or dual is feasible, and it does not require strict
feasibility. [d]

Theorem 1. If f, fi,..., fm are convex functions and h;(-) are affine, the Slater
condition guarantees the strong duality. For proof of this theorem, please refer to
chapter 5.4 of Algorithms for Convexr Optimization by Vishnoi.

2 Kahn-Karush-Tucker Condition

For problems in the form O, the Kahn-Karush-Tucker conditions are the following:

Definition 6. (KKT conditions) We say the primal variables z. € R and the
dual variables A, € R™, p, € RP satisfy KKT conditions if

o (Primal feasibility) Vj € [m] : f;(z,) <0 and Vi€ [p]: hi(z,) = 0.
o (Dual feasibility) A\« > 0.
o (Stationarity) O, L(x., \s, ptx) = 0.
o (Complementary slackness) Vj € [m] : \; f;j(z.) = 0.
Remark. The complementary slackness condition has the following implication.
« A >0 = fi(a") =0.

o fi(z*) <0 = A =0.



3 Strong Duality and KKT conditions

Now, let 2, € R? be the primal feasible points and let A\, € R™ and u, € R? be the
dual feasible points.

Theorem 2 (Strong Duality and KKT conditions). Strong duality, i.e.,

f(@) = g(\e, )

implies that T, A, ps satisfy the KKT conditions. Furthermore, if f(+), f1(-), ..., fm(*)
are convex and hyi(-), ha(-), ..., hy(-) are affine, then the converse is also true: KKT
conditions implies the strong duality.

Remark. The above theorem has the following implications:

o Recall the dual value is always not greater than the primal value, that is

< i .
sup g(A, p) < inf f(z)

A>0;u

Therefore, when they have zero duality gap, that is
9, i) = f(24),
then

x, is primal optimal ; A, . are dual optimal.

o If f(1), f1(+),..., fin(-) are convex and hi(-), ha(-), ..., h,(-) are affine, then
KKT conditions implies the strong duality. That is, if x,, A, u. satisfies KKT,
then

x, is primal optimal ; A, p, are dual optimal.

4 Applications of KKT conditions

Example 1. Recall that the projection onto a set C' is defined as Proj.(y) =
arg mingcc ||y — || Now, consider that we want to find the projection onto the
ls—norm ball C' := {x € R?: ||x||, < 1}. This is equivalent to the following optimiza-
tion problem

min ||z — y||3
x

st. ||z]3 <1



We will show using the KKT conditions that the desired projection is equal to
¥y

max{L, [lyll2}

Step 1. Getting the Lagrangian L(z, A) by introducting the Lagrangian Multiplier
A e RY,

Projc(y) =

L(x.A) = f(@) + A (lall3 ~ 1)
= llz =yl + A ([l - 1).
What is the “primal feasibility” of the KKT conditions in this case?
v:zfz <1
What is the “dual feasibility” of the KK'T conditions in this case?
A>0
What is the “stationarity” of the KK'T conditions in this case?
V.L(x,A\)=0=2(z—y)+2 \x =0

y ()
Sy=(1+Nresr=—"—
y=0+Nrer=a
What is the “complementary slackness” of the KKT conditions in this case?
A(llzlz =1) =0 (6)

As x must satisfy primal feasibility condition, we will now distinguish the following
cases:

1. Case: ||z||3 < 1.
By complementary slackness, we have A\ = 0. In this case, by the stationarity
condition(5), we also know that y = x. Intuitively, this implies that is y is
already in the 2-norm ball, then we can simply output y as the solution to the
projection problem.

2. Case: ||z]3=1.
By stationarity, we know that

2
Yy _
HO+A)2
1 2
— =1 =(1
Y )
_ r=—=—
L+l

The results make sense as if the output of the project is a point which satisfy
|z]|32 = 1, then 3’s projection is the normalized vector y.
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Example 2. Now, consider that we want to find the projection onto the /; —norm ball
C = {z € R?: ||z]|; < 1}. This is equivalent to the following modified optimization
problem, for simplicity in finding gradient,
o1 9
min £z~ 3
st lz|h <1

Remark. The inequality(||z||; < 1) in the constraint is very important, without it
the set C' is not a convex set.

Remark. Unlike the projection onto (2-norm, projection onto /1-norm does not have
a closed form solution, this will be clear once we find the solution.

We will proceed using KKT theorem to show that the solution to the above problem
is the following:
r=yif fylh <1;

otherwise,
w[i] = sign(yli]) (lyli]] — A), Vi € [d]
where X is a number such that 37 (ly[i]] — )\)+ =1and (2); := max{0, z}.

We begin with constructing the Lagrangian L(z, A) for A € R%O. Where

LX) = gz — gl + Ml — 1)
What is the “primal feasibility” of the KK'T conditions in this case?
v llel <1
What is the “dual feasibility” of the KKT conditions in this case?
A>0

What is the “stationarity” of the KKT conditions in this case? There are some added
complications since the [1-norm isn’t a differentiable function.
Recall the subgradient of the [1-norm,

g1 € O(|x[1]])
. . g2 € O(|[2]]) o
|zl = > ,_; |x[i]]. Subgradient of ||z||; = , where we have if |z[i]| > 0,
ga € O(|[d])
then Oz[i| = Vz[i] = £1. If z[i] = 0, then Oz[i] = [-1,1].
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We want to set the subgradient of the Lagrangian to 0, which is

O L(x,\)=(x—y)+Xg.>0
< yli] = z[i] + Ag;, where g; € d(|z[i]|)

Since the subgradient of an absolute value is anything in the set [—1,1], we can
generalize it into
9lxli]| = sign(z[i])

Thus, we will arrive at the following,
0€0,L(x,\) = 0¢€ z[i] —y[i] + Isign(z[i]) = yl[i] € x[i] + Asign(z[i]),
then if we express z[i] in terms of y[i], we get
x[i] = sign(y[i]) (lyli]l - A), Vi € [d] (7)
ylil = A, yli] > A

— <o, yli] € [<A ] - (8)
ylil+ A, yli] < =X

What is the “complementary slackness” of the KKT conditions in this case?
A(Jz]l; =1) =0 = A=0or [lzf, =1

Now, using the KKT conditions, we can derive the final solution. Starting from the
dual feasibility condition, we have the following cases:

e A=0
From stationarity, we have z[i] = sign(y[i])|y[i]] = y[i], which implies that
|z|l; =lyl|;- From the primal feasibility condition, we know that this is the

case where y in within the {1-norm ball. ||y||, < 1.

e A>0
By complementary slackness, we know that ||z||, = 1, which implies

n

> Isign(ylil) (lylill =), | = Z |yl = A)+ =1

=1

From this, we will make note that A is the root for solving the above linear
piece-wise equations.



To express the expression z[i] = sign(y[i]) (|y[i]| — A) . in a more explicit format, we
can consider the expression case by case, which is

y[i] - )‘7 y[l] > A
ai] = sign(yli)) (Jylill = A), = {0, yli] € [, A] (9)
yli] + A, yli] < —A

where A is the root for > " (Jy[i]] — \);+ = 1.

Thus, the solution for projection to [1-norm ball is y if ||y||, < 1, otherwise it can be
constructed by component following equation (7).

Remark. The solution is not a closed form solution as it partially depend on A. For
solving piece-wise linear equations, please follow the guide by Ang[?].

5 Proof for Theorem 2

Proof. The proof consists of two parts:

o The direction of strong duality implies KKT can be shown by:
m p
fla®) = g\ p) =taf | flo) + Y A file) + ) pihi(a) (10)
i=1 i=1

< f(z7) +Zkffi(w*) +Zu§‘hi($*) (11)
< f(z7) (12)

where ([0) by the definition of the infimum and (I2) is by the primal feasibility
and dual feasibility. Now it is evident that () and (I2) are actually equalities.
That is, we have

F@?) = g\, ) = inf | f(2) + DX filw) + > ki) (13)

= f(z%) +ZA2‘J‘}($*) +Zufhi($*) (14)
= f(&"), (15)

where equality (Id) implies the stationarity, 0,L(z«, A, 1) = 0, and equality
(IH) implies the complementary slackness (since we also have the primal and
dual feasibility above).



« Now we prove the other direction: if f(-), fi(-),..., fm(-) are convex and h;(-),
ha(+), ..., hy(-) are affine, then KKT conditions imply strong duality.

By definition, the dual function with optimal A, pu is

g( A, 1)
= inf L(x, \,, ps), by definition.

= L(x4, A, tx), by convexity of L and stationarlity condition.

m p
= f(z.) + Z Aj fi(@.) + Z wihi(z,), by definition of Lagrangian.
=1 i=1

= f(z,) + Z A fi(x.), by primal feasibility condition.

J=1

= f(=.), by complementary slackness condition

Thus completes the proof. Il

Bibliographic notes

Chapter 5 in [3] provides a thorough treatment of Lagrangian, duality, conjugate
functions, and KKT optimality conditions. For the proof of strong duality under
Slater’s condition, see also Chapter 5.4 of [d].
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