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Lecture 10: Kahn-Karush-Tucker Optimality Conditions

1 Duality Theory Cont’d
Recall that we are tying to find the minimizer of a function subject to constrains,
where

inf
x
f(x)

s.t. fj(x) ≤ 0, j = 1, . . . ,m.

s.t. affine hi(x) = 0, i = 1, . . . , p.

(1)

We have the following definitions:

Definition 1. (Lagrangian)

L(x, λ, µ) := f(x) +
m∑
j=1

λjfj(x) +

p∑
i=1

µihi(x). (2)

Definition 2. (Dual function)

g(λ, µ) := inf
x
L(x, λ, µ) (3)

Definition 3. (Dual Problem)

sup
λ≥0,µ

g(λ, µ) (4)

Definition 4. (Strong Duality) Strong duality means that there’s no duality gap
between the primal and the dual, in other words,

sup
λ≥0;µ

g(λ, µ) = inf
x∈C

f(x).

Definition 5. (Slater condition) Slater’s condition outlines a sufficient condi-
tion for strong duality to hold. Namely, if

• The primal problem is convex;

• The primal problem has a strictly feasible point, x̄ such that all the inequality
constraints defining C are strict at x̄, i.e., fj(x̄) < 0, ∀j ∈ [m], and hi(x̄) =

0, ∀i ∈ [p].
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then, strong duality holds, which implies:

d∗ = sup
λ≥0;µ

g(λ, µ) = inf
x∈C

f(x) = p∗.

Remark. For linear programs, namely in the forms of:

min
x

c⊤x

s.t.Ax ≤ b

strong duality holds if either primal or dual is feasible, and it does not require strict
feasibility. [1]

Theorem 1. If f, f1, . . . , fm are convex functions and hi(·) are affine, the Slater
condition guarantees the strong duality. For proof of this theorem, please refer to
chapter 5.4 of Algorithms for Convex Optimization by Vishnoi.

2 Kahn-Karush-Tucker Condition
For problems in the form 1, the Kahn-Karush-Tucker conditions are the following:

Definition 6. (KKT conditions) We say the primal variables x∗ ∈ Rd and the
dual variables λ∗ ∈ Rm, µ∗ ∈ Rp satisfy KKT conditions if

• (Primal feasibility) ∀j ∈ [m] : fj(x∗) ≤ 0 and ∀i ∈ [p] : hi(x∗) = 0.

• (Dual feasibility) λ∗ ≥ 0.

• (Stationarity) ∂xL(x∗, λ∗, µ∗) = 0.

• (Complementary slackness) ∀j ∈ [m] : λjfj(x∗) = 0.

Remark. The complementary slackness condition has the following implication.

• λ∗
i > 0 =⇒ fi(x

∗) = 0.

• fi(x
∗) < 0 =⇒ λ∗

i = 0.
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3 Strong Duality and KKT conditions
Now, let x∗ ∈ Rd be the primal feasible points and let λ∗ ∈ Rm and µ∗ ∈ Rp be the
dual feasible points.

Theorem 2 (Strong Duality and KKT conditions). Strong duality, i.e.,

f(x∗) = g(λ∗, µ∗)

implies that x∗, λ∗, µ∗ satisfy the KKT conditions. Furthermore, if f(·), f1(·), . . . , fm(·)
are convex and h1(·), h2(·), . . . , hp(·) are affine, then the converse is also true: KKT
conditions implies the strong duality.

Remark. The above theorem has the following implications:

• Recall the dual value is always not greater than the primal value, that is

sup
λ≥0;µ

g(λ, µ) ≤ inf
x∈C

f(x).

Therefore, when they have zero duality gap, that is

g(λ∗, µ∗) = f(x∗),

then

x∗ is primal optimal ; λ∗, µ∗ are dual optimal.

• If f(·), f1(·), . . . , fm(·) are convex and h1(·), h2(·), . . . , hp(·) are affine, then
KKT conditions implies the strong duality. That is, if x∗, λ∗, µ∗ satisfies KKT,
then

x∗ is primal optimal ; λ∗, µ∗ are dual optimal.

4 Applications of KKT conditions
Example 1. Recall that the projection onto a set C is defined as ProjC(y) :=

argminx∈C ∥y − x∥2. Now, consider that we want to find the projection onto the
l2−norm ball C := {x ∈ Rd : ∥x∥2 ≤ 1}. This is equivalent to the following optimiza-
tion problem

min
x

∥x− y∥22

s.t. ∥x∥22 ≤ 1
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We will show using the KKT conditions that the desired projection is equal to

ProjC(y) =
y

max{1, ∥y∥2}
.

Step 1. Getting the Lagrangian L(x, λ) by introducting the Lagrangian Multiplier
λ ∈ Rd

≥0,

L(x, λ) = f(x) + λ
(
∥x∥22 − 1

)
= ∥x− y∥22 + λ

(
∥x∥22 − 1

)
.

What is the “primal feasibility” of the KKT conditions in this case?

x : ∥x∥22 ≤ 1

What is the “dual feasibility” of the KKT conditions in this case?

λ ≥ 0

What is the “stationarity” of the KKT conditions in this case?

∇xL(x, λ) = 0 ⇒ 2(x− y) + 2λx = 0

⇔ y = (1 + λ)x ⇔ x =
y

(1 + λ)

(5)

What is the “complementary slackness” of the KKT conditions in this case?

λ
(
∥x∥22 − 1

)
= 0 (6)

As x must satisfy primal feasibility condition, we will now distinguish the following
cases:

1. Case: ∥x∥22 < 1.
By complementary slackness, we have λ = 0. In this case, by the stationarity
condition(5), we also know that y = x. Intuitively, this implies that is y is
already in the 2-norm ball, then we can simply output y as the solution to the
projection problem.

2. Case: ∥x∥22 = 1.
By stationarity, we know that∥∥∥∥ y

(1 + λ)

∥∥∥∥2

2

= 1

⇔ 1

(1 + λ)2
∥y∥22 = 1 =⇒ ∥y∥2 = (1 + λ)

=⇒ x =
y

1 + λ
=

y

∥y∥2
The results make sense as if the output of the project is a point which satisfy
∥x∥22 = 1, then y’s projection is the normalized vector y.
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Example 2. Now, consider that we want to find the projection onto the l1−norm ball
C := {x ∈ Rd : ∥x∥1 ≤ 1}. This is equivalent to the following modified optimization
problem, for simplicity in finding gradient,

min
x

1

2
∥x− y∥22

s.t. ∥x∥1 ≤ 1

Remark. The inequality(∥x∥1 < 1) in the constraint is very important, without it
the set C is not a convex set.
Remark. Unlike the projection onto l2-norm, projection onto l1-norm does not have
a closed form solution, this will be clear once we find the solution.

We will proceed using KKT theorem to show that the solution to the above problem
is the following:

x = y if ∥y∥1 ≤ 1;

otherwise,
x[i] = sign(y[i])

(
|y[i]| − λ

)
+
, ∀i ∈ [d]

where λ is a number such that
∑d

i=1

(
|y[i]| − λ

)
+
= 1 and (z)+ := max{0, z}.

We begin with constructing the Lagrangian L(x, λ) for λ ∈ Rd
≥0. Where

L(x, λ) =
1

2
∥x− y∥22 + λ(∥x∥1 − 1).

What is the “primal feasibility” of the KKT conditions in this case?

x : ∥x∥1 ≤ 1

What is the “dual feasibility” of the KKT conditions in this case?

λ ≥ 0

What is the “stationarity” of the KKT conditions in this case? There are some added
complications since the l1-norm isn’t a differentiable function.
Recall the subgradient of the l1-norm,

∥x∥1 =
∑

i=1 |x[i]|. Subgradient of ∥x∥1 =


g1 ∈ ∂(|x[1]|)
g2 ∈ ∂(|x[2]|)

...
gd ∈ ∂(|x[d]|)

 where we have if |x[i]| > 0,

then ∂x[i] = ∇x[i] = ±1. If x[i] = 0, then ∂x[i] = [−1, 1].
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We want to set the subgradient of the Lagrangian to 0, which is

∂xL(x, λ) = (x− y) + λgx ∋ 0

⇔ y[i] = x[i] + λgi, where gi ∈ ∂(|x[i]|)

Since the subgradient of an absolute value is anything in the set [−1, 1], we can
generalize it into

∂|x[i]| = sign(x[i])

Thus, we will arrive at the following,

0 ∈ ∂xL(x, λ) =⇒ 0 ∈ x[i]− y[i] + λsign(x[i]) =⇒ y[i] ∈ x[i] + λsign(x[i]),

then if we express x[i] in terms of y[i], we get

x[i] = sign(y[i])
(
|y[i]| − λ

)
+
, ∀i ∈ [d] (7)

=


y[i]− λ, y[i] > λ

0, y[i] ∈ [−λ, λ]

y[i] + λ, y[i] < −λ

. (8)

What is the “complementary slackness” of the KKT conditions in this case?

λ(∥x∥1 − 1) = 0 =⇒ λ = 0 or ∥x∥1 = 1

Now, using the KKT conditions, we can derive the final solution. Starting from the
dual feasibility condition, we have the following cases:

• λ = 0

From stationarity, we have x[i] = sign(y[i])|y[i]| = y[i], which implies that
∥x∥1 = ∥y∥1. From the primal feasibility condition, we know that this is the
case where y in within the l1-norm ball. ∥y∥1 ≤ 1.

• λ > 0

By complementary slackness, we know that ∥x∥1 = 1, which implies

n∑
i=1

|sign(y[i])
(
|y[i]| − λ

)
+
| =

n∑
i=1

|(|y[i]| − λ)+ = 1

From this, we will make note that λ is the root for solving the above linear
piece-wise equations.
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To express the expression x[i] = sign(y[i])
(
|y[i]| − λ

)
+

in a more explicit format, we
can consider the expression case by case, which is

x[i] = sign(y[i])
(
|y[i]| − λ

)
+
=


y[i]− λ, y[i] > λ

0, y[i] ∈ [−λ, λ]

y[i] + λ, y[i] < −λ

(9)

where λ is the root for
∑n

i=1(|y[i]| − λ)+ = 1.
Thus, the solution for projection to l1-norm ball is y if ∥y∥1 ≤ 1, otherwise it can be
constructed by component following equation (7).
Remark. The solution is not a closed form solution as it partially depend on λ. For
solving piece-wise linear equations, please follow the guide by Ang[2].

5 Proof for Theorem 2
Proof. The proof consists of two parts:

• The direction of strong duality implies KKT can be shown by:

f(x∗) = g(λ∗, µ∗) = inf
x

f(x) +
m∑
i=1

λ∗
i fi(x) +

p∑
i=1

µ∗
ihi(x)

 (10)

≤ f(x∗) +
m∑
i=1

λ∗
i fi(x

∗) +

p∑
i=1

µ∗
ihi(x

∗) (11)

≤ f(x∗) (12)

where (11) by the definition of the infimum and (12) is by the primal feasibility
and dual feasibility. Now it is evident that (11) and (12) are actually equalities.
That is, we have

f(x∗) = g(λ∗, µ∗) = inf
x

f(x) +
m∑
i=1

λ∗
i fi(x) +

p∑
i=1

µ∗
ihi(x)

 (13)

= f(x∗) +
m∑
i=1

λ∗
i fi(x

∗) +

p∑
i=1

µ∗
ihi(x

∗) (14)

= f(x∗), (15)

where equality (14) implies the stationarity, ∂xL(x∗, λ∗, µ∗) = 0, and equality
(15) implies the complementary slackness (since we also have the primal and
dual feasibility above).
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• Now we prove the other direction: if f(·), f1(·), . . . , fm(·) are convex and h1(·),
h2(·), . . . , hp(·) are affine, then KKT conditions imply strong duality.

By definition, the dual function with optimal λ, µ is

g(λ∗, µ∗)

= inf
x
L(x, λ∗, µ∗), by definition.

= L(x∗, λ∗, µ∗), by convexity of L and stationarlity condition.

= f(x∗) +
m∑
j=1

λ∗
jfj(x∗) +

p∑
i=1

µ∗
ihi(x∗), by definition of Lagrangian.

= f(x∗) +
m∑
j=1

λ∗
jfj(x∗), by primal feasibility condition.

= f(x∗), by complementary slackness condition

Thus completes the proof.

Bibliographic notes
Chapter 5 in [3] provides a thorough treatment of Lagrangian, duality, conjugate
functions, and KKT optimality conditions. For the proof of strong duality under
Slater’s condition, see also Chapter 5.4 of [4].
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